GenAI-Arena:首个多模态生成 AI 排名开放平台

      生成式 AI 指的是能够生成新内容(如图像、视频、文本等)的人工智能技术。近年来,生成式 AI 在图像和视频生成领域取得了突破性进展,例如:

  • 艺术创作:生成式 AI 可以根据文本描述生成各种风格的艺术作品,例如风景画、人物肖像、抽象艺术等。
  • 视觉内容增强:生成式 AI 可以用于视频剪辑、图像修复、图像风格迁移等,提升视觉内容的品质和效果。
  • 医疗影像:生成式 AI 可以用于医学图像的生成和分割,辅助医生进行诊断和治疗。

      尽管生成式 AI 取得了显著进展,但评估这些模型的性能仍然是一个挑战。传统的评估指标,例如 PSNR、SSIM、LPIPS、FID 等,虽然在某些方面提供了有价值的洞察,但在提供模型整体性能的全面评估方面往往不足,尤其是在涉及主观质量如美学和用户满意度时。

      GenAI-Arena 旨在解决这一问题。它是一个开放的评估平台,允许用户参与评估不同的图像和视频生成模型。用户可以生成图像或视频,将它们并排比较,并为它们投票。通过利用用户的反馈和投票,GenAI-Arena 旨在提供一个更民主、更准确的模型性能评估方法。

1 生成式 AI 评估指标和生成式 AI 评估平台

1.1 生成式 AI 评估指标

  • CLIPScore:通过计算图像和文本的 CLIP 嵌入的余弦相似度来衡量图像和文本的一致性。
  • IS (Inception Score):衡量图像的多样性和清晰度。
  • FID (Fréchet Inception Distance):衡量真实图像分布和生成图像分布之间的差异。
  • PSNR (Peak Signal-to-Noise Ratio):衡量图像的重建质量。
  • SSIM (Structural Similarity Index):衡量图像的结构相似性。
  • LPIPS (Learned Perceptual Image Patch Similarity):衡量图像的感知相似性。
  • MLLM (Multimodal Large Language Model) 作为评估指标:例如,T2I-CompBench 使用 miniGPT4 评估文本到图像生成任务,TIFA 使用视觉问答技术评估文本到图像生成任务,VIEScore 使用 MLLM 作为统一的评估指标。

1.2 生成式 AI 评估平台

  • T2I-CompBench:评估组合文本到图像生成任务。
  • HEIM:提供文本到图像任务的全面评估框架,包括安全性、毒性等方面。
  • ImagenHub:评估文
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值