keras GlobalAveragePooling函数的理解

本文深入探讨了Keras框架中GlobalAveragePooling层的工作原理,对比了它与普通平均池化层的区别,重点讲解了GlobalAveragePooling如何对特征图进行全局平均操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

Keras上面提供很多封装的函数,我们只需要调用就行,但是内部原理和实现,我们往往不是很清楚。

1 GlobalAveragePooling

GlobalAveragePooling 和平时我们的average pooling区别在于,GlobalAveragePooling对每个feature map内部取平均。
在这里插入图片描述


reference:

  1. GobalAveragePool 理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值