(8)机器人动力学

这篇博客介绍了机器人动力学的基础,包括质点动力学和单刚体动力学,涉及牛顿第二定律、拉格朗日方程、转动惯量等概念。通过对相关数学内容的探讨,如迹、反对称矩阵和矩阵微分,深入理解机器人的动力学建模方法,如Lagrange和Newton-Euler动力学。内容涵盖了从质点的动能和势能到刚体的惯性张量和欧拉方程,为机器人设计、仿真和控制提供了理论基础。
摘要由CSDN通过智能技术生成

目录

一、相关数学内容:

1、迹:

2、反对称矩阵:

3、矩阵微分和迹的性质:

二、质点动力学:

1、牛顿第二定律:

2、质点的能量:

 3、质点动力学的拉格朗日推导:

三、单刚体动力学:

1、转动惯量:

2、惯性矩:

3、惯性积:

 4、惯性张量:

 5、牛顿方程:

6、欧拉方程:

7、刚体动力学:


说明:博客中的很多内容都是学习笔记的整理和记录,非原创,如有涉及侵权请联系删除,谢谢。

机器人是一个具有多输入多输出的复杂动力学系统,存在严重的非线性,需要非常系统的方法对机器人进行动力学研究。常用的机器人动力学建模方法有:Lagrange(拉格朗日)动力学方法、Newton-Euler(牛顿-欧拉)动力学方法、Gauss(高斯)动力学方法、Kane(凯恩)动力学方法等。

机器人动力学研究的是机器人的运动和作用力之间的关系。机器人的动力学问题包括动力学正问题和动力学逆问题。动力学正问题是对于给定的关节驱动力/力矩,求解机器人对应的运动。需要求解非线性微分方程组,计算复杂,主要用于机器人的运动仿真。动力学逆问题是已知机器人的运动,计算对应的关节驱动力/力矩,即计算实现预定运动需要施加的力/力矩。不需要求解非线性方程组,计算相对简单,主要用于机器人的运动控制。

机器人动力学的用途主要有一下三个方面:

①、为机器人设计提供依据:能计算出实现预定运动所需的力/力矩;

②、机器人的动力学仿真:能根据连杆质量、负载、传动结构进行动态性能仿真;

③、实现机器人的最优控制:能优化性能指标和动态性能,调整伺服增益;

这里主要介绍利用Lagrange(拉格朗日)动力学方法、Newton-Euler(牛顿-欧拉)动力学方法去建立机械臂的动力学模型。

为了能更好的理解这些内容,这里先介绍一些基础内容点:

一、相关数学内容:

1、迹:

在线性代数中一个方阵的对角元素之和称为迹。

 迹是方阵的一个非常重要的特征:①相似矩阵的迹相同;②迹是矩阵的特征值之和;

2、反对称矩阵:

我们把满足的n阶方阵A称为反对称矩阵;若A是反对称矩阵,则根据定义有如果则可以得到,说明反对称矩阵的一个性质即主对角线上的元素为0。

 在matlab中skew()命令可以将一个向量(一维或三维)变成一个反对称矩阵如下:

 

 利用反对称矩阵可以实现将两个向量的叉积变为矩阵与向量的点积

 

则: 。

3、矩阵微分和迹的性质:

 

二、质点动力学:

为了研究机器人的动力学,先要了解一下质点动力学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值