目录
(说明:博客中的很多内容都是学习笔记的整理和记录,非原创,如有涉及侵权请联系删除,谢谢。)
机器人是一个具有多输入多输出的复杂动力学系统,存在严重的非线性,需要非常系统的方法对机器人进行动力学研究。常用的机器人动力学建模方法有:Lagrange(拉格朗日)动力学方法、Newton-Euler(牛顿-欧拉)动力学方法、Gauss(高斯)动力学方法、Kane(凯恩)动力学方法等。
机器人动力学研究的是机器人的运动和作用力之间的关系。机器人的动力学问题包括动力学正问题和动力学逆问题。动力学正问题是对于给定的关节驱动力/力矩,求解机器人对应的运动。需要求解非线性微分方程组,计算复杂,主要用于机器人的运动仿真。动力学逆问题是已知机器人的运动,计算对应的关节驱动力/力矩,即计算实现预定运动需要施加的力/力矩。不需要求解非线性方程组,计算相对简单,主要用于机器人的运动控制。
机器人动力学的用途主要有一下三个方面:
①、为机器人设计提供依据:能计算出实现预定运动所需的力/力矩;
②、机器人的动力学仿真:能根据连杆质量、负载、传动结构进行动态性能仿真;
③、实现机器人的最优控制:能优化性能指标和动态性能,调整伺服增益;
这里主要介绍利用Lagrange(拉格朗日)动力学方法、Newton-Euler(牛顿-欧拉)动力学方法去建立机械臂的动力学模型。
为了能更好的理解这些内容,这里先介绍一些基础内容点:
一、相关数学内容:
1、迹:
在线性代数中一个方阵的对角元素之和称为迹。
迹是方阵的一个非常重要的特征:①相似矩阵的迹相同;②迹是矩阵的特征值之和;
2、反对称矩阵:
我们把满足的n阶方阵A称为反对称矩阵;若A是反对称矩阵,则根据定义有如果则可以得到,说明反对称矩阵的一个性质即主对角线上的元素为0。
在matlab中skew()命令可以将一个向量(一维或三维)变成一个反对称矩阵如下:
利用反对称矩阵可以实现将两个向量的叉积变为矩阵与向量的点积。
则: 。
3、矩阵微分和迹的性质:
二、质点动力学:
为了研究机器人的动力学,先要了解一下质点动力学