(一)悟说向量、向量运算与向量线性相关性那些事

  在学习过程中总会有困惑和感悟,无人诉说憋着有点难受。于是就想用写博文的方式把它们表达出来。按照自己的理解,想到什么说什么,有说的不对的,欢迎指正。
  在刚学线性代数,初识向量这个概念的时候,不知道你们有没有这样的疑问:为什么要把几个数排列起来构造一个叫向量这么个东西?为什么要研究它?后来我想明白了,因为世界万物有各种属性或者说特征,把这些属性量化后按顺序排列起来就构成了一个向量。例如,人有肤色、身高、年龄、体重等属性。有些事物的本质属性有两个维度,例如平面上的点。有些事物的本质属性有三个维度,例如颜色。研究向量的性质,可以洞察事物的本质属性。当然,向量不仅局限于表示事物的属性。我们可以根据实际问题构建向量。例如,在推荐系统中,我们可以把用户对物品的评分构成一个向量,这个向量隐含着用户对物品的偏好。
  认识了向量之后,教科书里说向量有方向和长度。看到这我就想,向量是由一组数构成的,哪来的角度值、哪来的长度呢?当时就有点懵圈了。后来才明白,向量的长度和方向指的是向量在二维平面或三维空间的几何意义。例如,平面上的点可以用二维向量表示。这个点的横坐标 x 0 x_{0} x0和纵坐标 y 0 y_{0} y0就是向量的两个分量。而这个向量的几何意义就是,以原点为起点,以该点为终点的带箭头的有向线段。这条有向线段的长度就是该向量的长度。它与 x x x轴的夹角作为它的方向。如果一条有向线段起点不在原点,我们可以将它平移,让它的起点与原点重合,这时就可以用它的终点坐标作为向量的分量。那么,对于4维以上的向量,它的长度和方向又怎么理解呢。我们可以把它想像成是多维坐标系上的某个点,原点与它的距离就是它的长度。
  教科书上给出了许多向量运算的定义。例如,向量数乘的定义,它是指用一个标量乘以向量,即标量乘以向量各个分量。假设标量 k k k乘以向量 a ⃗ \vec{a} a 等于向量 b ⃗ \vec{b} b 。当 k > 0 k>0 k>0时,它的几何意义是,构造一个方向与 a ⃗ \vec{a} a 相同,长度为向量 a ⃗ \vec{a} a k k k倍的向量。如果 k k k为负数,则向量 b ⃗ \vec{b} b 与向量 a ⃗ \vec{a} a 方向相反。
  两向量相加定义为两向量对应分量相加。为什么是对应分量相加,而不是其它规则。例如倒过来相加,即把第一个向量的第一个分量与第二向量的最后一个分量相加。前面我们说过,向量的实际意义是物体属性的排列。第一个分量表示的属性与最后一个分量表示的属性不一样,相加也就没有实际意义。在平面直角坐标系中,二维向量相加满足平行四边形法则,这个结论可以画图证明得到。两向量相减的几何意义为,以减数向量(这种说法有点不严格)的终点为起点,以被减向量的终点为终点且方向指向被减向量的有向线段。
  向量除了数乘、加法运算,还有数量积运算。把两向量对应分量相乘再求和定义为两向量的数量积,数量积是一个标量。如果只是把对应分量相乘而不相加,这种运算叫作哈德玛积(Hadamard),哈德玛积是一个向量。此外,向量还有其它运算,例如,叉积、外积。那么,为什么要定义这么多的向量运算,它们有什么几何意义或实际意义吗?在二维平面上,数量积有几何意义,虽然感觉意义不大。在三维空间中,叉积有几何意义。对于没有物理意义的运算,暂且把它们当作行话(专业术语),当与别人交流的时候知道对方在说什么。
  有了数乘的定义,我们就可以用一个数 k k k乘以向量 a ⃗ \vec{a} a 得到一个新向量 b ⃗ = k a ⃗ \vec{b}=k\vec{a} b =ka 。当 k ≠ 0 k\neq 0 k=0时,向量 b ⃗ \vec{b} b 的方向要么与 a ⃗ \vec{a} a 相同,要么与 a ⃗ \vec{a} a 相反,向量 b ⃗ \vec{b} b 的方向由 k k k的正负决定。 b ⃗ \vec{b} b 的长度是 a ⃗ \vec{a} a k k k倍。这种情况,叫作 b ⃗ \vec{b} b a ⃗ \vec{a} a 线性相关。零向量与任何向量都线性相关,可由任何向量线性表示。两个线性相关的非零向量可以相互线性表示。在颜色空间中,黄 Y ⃗ = ( 255 , 255 , 0 ) T \vec{Y}=(255, 255, 0)^{T} Y =(255,255,0)T可由红 R ⃗ = ( 255 , 0 , 0 ) T \vec{R}=(255, 0, 0)^{T} R =(255,0,0)T和绿 G ⃗ = ( 0 , 255 , 0 ) T \vec{G}=(0, 255, 0)^{T} G =(0,255,0)T线性表示,即 Y ⃗ = R ⃗ + G ⃗ \vec{Y}=\vec{R}+\vec{G} Y =R +G
  如果把 Y ⃗ , R ⃗ , G ⃗ \vec{Y},\vec{R}, \vec{G} Y ,R ,G 构成向量组 A \mathcal{A} A,那么向量组 A \mathcal{A} A线性相关。这里有个问题,向量组 A = { Y ⃗ , R ⃗ , G ⃗ } \mathcal{A} =\{\vec{Y},\vec{R}, \vec{G}\} A={Y ,R ,G }线性相关,那么向量组里边的任意一个向量都能由其余 n − 1 n-1 n1个向量线性表示吗?我的回答是:不一定能。我想到了一个反例,就拿这个例子来说,向量组 { R ⃗ , G ⃗ , Y ⃗ , B ⃗ } \{\vec {R}, \vec{G}, \vec{Y}, \vec{B}\} {R ,G ,Y ,B },向量 B ⃗ = ( 0 , 0 , 255 ) T \vec{B}=(0, 0, 255)^T B =(0,0,255)T就不能由向量 R ⃗ , G ⃗ , Y ⃗ \vec {R}, \vec{G}, \vec{Y} R ,G ,Y 线性表示。也就是说,向量组线性关,并不要求所有向量相互间都有关系,只要部分向量有关系就说向量组线性相关。
  教科书中关于向量组线性相关的定义很严格、很形式化,但也不太直观。教科书里边的描述是:“存在一组不全为零的数 k 1 , k 2 , … , k n k_{1},k_{2},\dots,k_{n} k1,k2,,kn,使得 k 1 a 1 ⃗ + k 2 a 2 ⃗ + ⋯ + k n a n ⃗ = 0 k_{1}\vec{a_{1}}+k_{2}\vec{a_{2}}+\dots+k_{n}\vec{a_{n}}=0 k1a1 +k2a2 ++knan =0,就说向量组 A = { a 1 ⃗ , a 2 ⃗ , … , a n ⃗ } \mathcal{A}=\{\vec{a_{1}},\vec{a_{2}},\dots,\vec{a_{n}}\} A={a1 ,a2 ,,an }线性相关”。这句话到底是啥意思,第一次看到这句话是不是和我一样,一点感觉都没有。我对这个形式化定义的理解是,向量组 A \mathcal{A} A里边应至少有两个向量线性相关,向量组才线性相关。也就是至少有一个向量能由另一个向量(当然能由多个向量线性表示也可以)线性表示,那么向量组就线性相关。
  最后有一个疑问:为什么要去研究向量组是线性相关还是无关,研究它有什么意义?关于这个问题,我们下次再一起讨论。

  • 22
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

遥望山海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值