大数据时代,各行业数据海量增长。然而,数据资源过于分散,获取存在延迟,孤岛化现象严重等,让企业无法快速识别有价值的数据信息,影响企业数据资产的评估。因此,构建企业数据化管理体系,是一块待挖掘的价值洼地。
企业数据管理的困境
目前,大部分企业都面临着相同的困境:大量碎片化数据,数据之间相互割裂且长久堆积,难以为企业创造有效价值。为此,企业不惜花费大量成本,希望利用碎片化的数据搭建出“埃菲尔铁塔”,然而现实却是很骨感的。
据IDC调查结果显示:数据分析及制作报告花费时间长、深度不足、缺乏专业数据分析人才等问题,让数据驱动增长变得非常难。其中,一部分企业经过多方努力,分析出有价值的数据结论,但由于自身对商业理解不足,最终无法运用起来,一样无法为企业创造价值。
企业数据化管理的业务层次需求
其实,在企业经营过程中,财务、销售、市场等业务自身就带有强烈的数据分析需求,数据分析本身不能为企业带来最大化的业绩和效率,但将正确的分析结果以最实际的方式应用到业务层面并不断产生效益,这就是企业不断追求的数据化管理。按照业务逻辑,数据化管理可以分为以下几个层次:
1、 业务层面
通过数据采集、统计、追踪和监控,搭建起业务管理模型,从而对业务进行科学指导管理。业务通常是最直接触及数据的层次,所以经常会存在未经分析加工的数据,直接应用到常规的业务管理当中。例如,销售业