银行是经营风险的企业,在风险识别、衡量、定价和防范等方面的能力水平,是判断银行是否具备核心竞争力的关键。随着社会信息化、数字化体系建设,银行风险管理也必将迎来“数智化”时代。
其实,银行业务的申请、交易、营销等环节都可能存在欺诈行为。然而,随着技术发展,欺诈行为团伙化、隐蔽化、专业化、实时化等情况愈发显现,反欺诈难度自然也是越来越大。
与此同时 ,业务种类每年都在递增,依靠传统的专家规则评分卡模型很难应付复杂的风控场景,亟待借助大数据、实时计算、知识图谱等高新技术打造高质量的授信能力。另外,业务运营、操作流程、员工异常行为、资产及负债流动性等风险同样面临着较大挑战。
风控管理应用场景举例
场景1:反欺诈
反欺诈是银行业务交易中非常重要的一环,通常基于黑白名单、知识图谱、司法、税务、工商等内外部数据对交易数据打宽,打宽后的数据用于专家规则和机器学习模型。银行发起交易的系统会根据实时数据平台 flashflow 的决策结果对交易放行或进行加强验证。风险结果数据可作为样本,用于图数据进行关联挖掘或特征分析。
反欺诈业务场景
技术实现方面,针对交易请求,实时数据平台 flashflow 会以编排逻辑来调用不同的计算引擎,并返回计算结果。同时,实时计算平台会使用交易系统数据库