DenseNet---密集卷积网络论文理解

本文详细介绍了DenseNet模型的结构,特别是dense block的运作方式。每个dense layer通过BN + ReLU + (Bottleneck) + 3x3conv + (Dropout)构建,每个block的输出都会连接到后续层作为输入。DenseNet通过层间连接减少了梯度消失,增强了特征传播。文章还解释了Bottleneck层的作用以及如何通过调整k值控制特征图的数量。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值