量化投资
文章平均质量分 51
S_o_l_o_n
logic
展开
-
因子中性化和因子解释
因子中性化因子值本身是否和市值存在高度相关性,若如此,会导致市值因子和该因子混在一起。如果相关性较高,那么实际上就和市值因子的效果一样了。有时候,我们一样因子本身不受市值影响,那么就可以通过使用中性化处理后的因子值。但是有时候,我们因子本身的含义本来就偏好某类市值股票,即这种市值效应是该因子本身的一种预期特点,那么就不需要中性化。因此,只有当我们一样剥离某些其他因子的影响,才需要中性化。一般什么情况下需要中性化?当我们想要的因子由于代理变量不够纯粹,会和其他因子存在较大相关性,但是我们又只想看纯原创 2023-02-12 15:55:23 · 1379 阅读 · 1 评论 -
配对交易-协整套利
当两个品种价格存在某种比较简单的可量化关系时,我们可以利用这种关系进行配对交易。一般情况下,这种关系可以是:价格协整、价格和对数价格协整。至于这种关系呈现的模式可能是同步相关,即两个品种同时受到相同或者类似的其他因素影响,从而价格存在同步变化的趋势;或者是leader-lagger关系,这个在商品期货的上下游品种中比较常见。价格协整如果两个品种存在价格协整关系,那么可以通过简单的线性回归两个两个价格的关系,利用残差项的平稳特性,进行统计套利。即如果残差项过大,比如偏离...原创 2022-04-03 21:29:34 · 1739 阅读 · 0 评论 -
实时计算交易盈亏、平仓盈亏和浮动盈亏
先看股票。从单笔交易来看,即先买后卖,那么很自然的,盈利就是卖价减去买价;对于多笔交易,如果可以追踪每笔交易的成交价格以及买卖时点,那么我们就可以精确的知道每笔平仓交易的盈亏,最后加总起来就可以了。这个想法很朴素,因为我们需要追踪每笔交易以及知道平仓对应的开仓交易,这样用卖价减去买价,自然就是这笔交易的盈亏。这种想法的代价就是我们需要知道的信息太多,包括每笔交易的价格和数量、买卖顺序以及平仓顺序。但是这种想法有助于我们得到更加简单的算法。 实际上,通过上面最朴素的想法,最后加总...原创 2021-05-16 19:43:08 · 2081 阅读 · 0 评论 -
为什么使用对数价格?——从连续时间模型下的利息理论说起
无论是在形式化的有效市场假说中,还是在期权定价的股价运动微分方程中,我们都可以见到其对于股票的价格都使用的是对数价格,而不是价格本身,那么为何要对做价格取对数处理呢?本文将从连续时间下的利息理论中的概念说起,一步步推导出对数价格的存在原因。本文的总体结论是:由于投资者关注的是相对概念(比如收益率),而非价格本身,因此在相对概念的前提下,引入利息强度,然后在连续时间模型下,导出对数价格...原创 2020-03-18 20:35:41 · 4623 阅读 · 0 评论 -
阿尔法经济学系列文章
本系列文章是笔者在读完《阿尔法经济学》之后的一些思考和总结,主要是关于有效市场的论述和思考、如何正确的认识市场以及阿尔法的来源分析,具体可以下列文章。1、市场是有效的吗?2、阿尔法经济学:认识市场3、阿尔法的来源...原创 2020-03-16 10:52:04 · 738 阅读 · 0 评论 -
阿尔法的来源
目录为什么在乎阿尔法?基准定价模型阿尔法的来源:风险还是错误定价?为什么在乎阿尔法? 阿尔法是投资组合的属性,其定义是,将该投资组合相对于无风险利率的超额收益(excess return)基于某个基准定价模型进行回归,得到的截距项就是阿尔法。所以,阿尔法是在该定价模型下,模型对投资组合的收益无法解释的部分,因此,阿尔法意味着该投资组合相对于基准定价模型风险调整后的特...原创 2020-03-15 22:02:58 · 1739 阅读 · 0 评论 -
阿尔法经济学:认识市场
目录交易的过程噪音vs价值信息噪音交易者vs价值投资者信息处理和建模算法交易和低延迟交易价格和市场微结构噪声交易者模型基本面定价模型总结参考资料 对于投资者来说,以一种正确的逻辑或者框架去了解市场是非常必要的,这对于其投资者判断和策略研发又具有基础性的意义。本文旨在提供一种认识市场的逻辑,将从交易过程最基本的构成开始。交易的过程 ...原创 2020-03-12 19:30:21 · 2071 阅读 · 0 评论 -
市场是有效的吗?
市场是有效的吗? 有效市场假说(EMH)已经被当做金融教科书中的经典部分讲解,EMH指的是在一个充分竞争和自由的金融市场中,资产的当前价格已经包含了所有信息,投资者无法通过分析获得超过市场平均水平的收益。反过来想,假设市场上出现了可以获取超额收益的机会,那么聪明的投资者会立马进行套利,这样该机会就会立马消失,从而市场立即会变得有效。所以,在一个有效的市场中,投资者只能获取市场平均收...原创 2020-03-10 19:15:43 · 1590 阅读 · 0 评论 -
利率、连续复利和利息强度
目录一、利率(实际利率和名义利率)二、连续复利三、利息强度总结一、利率(实际利率和名义利率) 利率就是资本的增长率,其定义如下所示。i表示资本a_t在时间区间h内的增长率,也即利率。这里的利率严格来说,我们称之为实际利率,即表示资本真实的在h内的增长率,后面我们还会定义一个名义利率。要注意的是,这里的实际利率和名义利率跟考虑通胀因素语境下的实际利率和名义利...原创 2019-12-08 16:49:24 · 3773 阅读 · 0 评论 -
收益率随机变量特征以及组合风险的一种几何直观解释
说明:由于本文是从投资的角度展开的,所以其中涉及的所有随机变量都表示收益率随机变量。由于本文旨在给收益率随机变量特征以及组合风险提供一个几何直观,因此文中的部分陈述可能会缺失一些严谨性。目录随机变量的向量表示期望向量中心化向量几何直观展示期望、标准差、协方差和相关系数的几何表示组合风险贡献的几何表示组合风险在代数和几何上的一致性推导从几何的角度去推导代数上的资产...原创 2019-09-11 18:27:48 · 1987 阅读 · 0 评论 -
各大期货交易所保证金收取方式说明
保证金制度是期货交易所的特色交易制度,其指的是当投资者在对期货合约进行开仓交易时,只需要支付合约价值一定比例的保证金,而不用支付全额的资金,而这个比例也一般在5%-15%左右;所以,保证金制度使得期货市场交易具有杠杆属性,而这个杠杆属性会增加收益风险,所以期货市场相比于股票市场,往往具有更高的风险。 由于期货交易中,持仓实际成本就是占用保证金,所以了解各个期货交易所的保...原创 2019-08-29 11:29:03 · 3195 阅读 · 0 评论 -
浅谈CAPM和因子模型
在讲因子模型之前,我们需要先了解一下CAPM模型。 CAPM模型是从均值-方差效用理论导出的一个均衡模型,其假定人们都是理性的,都具有一样的均值-方差偏好形式,即都喜欢高收益低方差,且homogeneous。那么就可以得到,资产的收益满足如下的关系: 该结论说明,在理论假设下,均衡状态中,由于无风险收益对于不同...原创 2019-08-04 22:49:58 · 7831 阅读 · 1 评论 -
交易柜台类型以及订单委托和响应过程
普通交易者要进行证券交易,首先必须获取交易资格,而在券商或者期货公司开户,就相当于券商或者期货公司提供给交易者交易资格,因为券商或期货公司会在交易所购买交易席位,当然有些大的机构投资者也会向交易所购买席位。当一个交易者想发出订单委托,其需要通过券商或者期货公司提供的客户端或者其交易柜台的API实现这个过程。对于手动交易,只需要通过客户端进行手动下单即可,而对于中高频的程序化交易,则需...原创 2019-07-24 23:19:33 · 1207 阅读 · 0 评论 -
关于vn.py的环境配置和项目安装——各种错误一招解决
vn.py是基于Python的开源量化交易程序开发框架,可以即时进行开发回测以及实盘交易,而且相对于国内的一些其他的所谓免费的量化平台,vn.py是开源的,而且更加的底层,更加的灵活,这对于真正想要从事量化的人来说显然是一个很好的选择。 但是,在1.8.1之前的vn.py的版本中,配置环境和安装这个项目并不简单,具体步骤可参考github上的说明。在最新的1.8.1的...原创 2018-07-25 01:07:52 · 11500 阅读 · 5 评论 -
如何用python获取沪深300历年成分股的行情数据
我们这里所需要的沪深300历年的成分股行情数据不是当下成分股的历年行情数据,而是历年的沪深300成分股的行情数据,如果是前者,那很简单,直接获取一下当下的沪深300的成分股列表,然后分别获取其历史行情数据就行了;但是我们需要的是后者,即不同时期的沪深300的成分股是有变动的,本文的思路是:先依次获取历年每天的成分股列表,然后再根据当天的成分股获取当天的数据,并逐步导入到csv文件中储...原创 2018-09-24 12:59:19 · 13340 阅读 · 1 评论 -
如何理解移动均线的意义和局限性及其相关指标浅析
移动均线是技术分析中最常用的指标之一,就单一的移动均线而言,其作用就是平滑价格走势,部分的去除噪音,体现出一定时间内价格的趋势走向。均线一般可分为简单移动平均、加权移动平均、指数移动平均,其中最核心的是简单移动平均,其他的两个是出于时效性的考虑而产生的变形。因此,下面我们从简单移动平均线来对均线做进一步的理解。 要准确理解简单移动平均线(下文中简称均线),需要先知道其计...原创 2018-09-14 13:25:54 · 2543 阅读 · 0 评论 -
MACD指标的数学意义解析
MACD是moving average convergence/divergence的缩写,其是技术分析中很常用的一个指标,其信号意义和双均线类似,只是MACD相对更精细和便与分析。 MACD指标由三部分构成:MACD线、信号线(signal line,MACD线的9日指数移动均线)、离差图(divergence histogram)。其中MACD线是原始价格序列的1...原创 2018-09-14 21:57:36 · 9614 阅读 · 1 评论 -
关于构建策略和回测的几点思考
1、我们构建一个策略时,要清楚其背后的逻辑,即产生买卖信号的逻辑,这个逻辑是很重要的。因为只有我们知道背后的逻辑,才能对这个策略做出有效的评估,对一个策略的有效评估不能仅仅依赖于回测结果以及短时间的模拟或实盘的效果,因为未来很可能就不成立了,因此,还有很重要的一部分就是策略的逻辑,买卖逻辑才是让我们知道策略的上下边界的地方,毕竟是真金白银,一个黑箱子策略带来的风险太大。当然,由于市场的复杂性,最本...原创 2018-10-04 13:47:07 · 1252 阅读 · 0 评论 -
基于聚宽数据JQData的沪深300股指期货贴水现象简析
沪深300股指期货是以沪深300指数作为标的,于2010年4月16日在中金所推出的一个股指期货品种。期货的基本功能就是为投资者提供套保风险对冲和现货市场的价格发现,而对于股指期货来说,其风险对冲功能主要体现在市场中性alpha策略的系统性风险的对冲上,一般是通过持有股票的投资组合多头,并做空股指期货,来对冲大盘的系统性风险以达到锁定alpha收益的目的,因此,股指期货是实现市场中性a...原创 2018-11-03 14:41:30 · 3095 阅读 · 0 评论 -
利用scipy.optimize求解投资组合的有效边界
本文例子是基于道琼斯指数、墨西哥MXX指数、日经225、富时100四个指数来构建有效前沿,思路很简单,在给定组合的收益率下,寻找最小方差的投资比例,然后分别取不同的组合收益率,寻找对应的最小方差;那么这个过程如何在python中实现呢?可以利用scipy.optimize中的minimize函数进行求解,代码如下:# -*- coding: utf-8 -*-"""计算有效...原创 2018-12-12 21:45:49 · 2756 阅读 · 0 评论 -
境内股指期货品种、合约类型和周期规律简介
股指期货作为二级市场上的重要衍生工具,随着国内证券市场的不断完善和交易策略的不断丰富,其地位和意义也必然在不断的提高,本文作为一篇介绍性质的文章,旨在介绍目前大陆拥有期指品种、合约类型以及各个合约的生命周期,以让读者对大陆的股指期货有一个相对基本而全面的了解。 目前大陆有三种股指期货,由中金所推出,分别是上证50股指期货、沪深300股指期货和中证500股指期货,其代码分...原创 2019-01-16 18:42:39 · 2233 阅读 · 4 评论 -
期货定价和指数套利
期货可以认为是一种标准化后的远期合约,因此如果忽略交易成本、保证金利息等因素,期货的定价和远期合约的定价是一样的,所以这里只要知道远期合约的定价,便可以通过考虑额外的成本或者收益来类似的推导期货定价。对于远期合约定价,根据无风险套利原理,可得远期合约的定价公式为: 上面第一个式子中...原创 2019-03-02 17:22:24 · 1953 阅读 · 0 评论 -
Python统计建模分析工具包statsmodels的使用简介
在Python中,statsmodels是统计建模分析的核心工具包,其包括了几乎所有常见的各种回归模型、非参数模型和估计、时间序列分析和建模以及空间面板模型等,其功能是很强大的,使用也相当便捷,当然前提是知道怎么去使用。最实用最有效的方式自然是自己去看官方的文档,学习里面的例子,学会如何去使用,但是对于刚开始的学习者来说,这种大的文档难免显得有点庞杂,因此本文旨在从大的方向上去介绍一...原创 2019-02-24 13:14:14 · 12196 阅读 · 1 评论 -
大陆证券(期货)交易所手续费计算方式详解
本文说的证券交易指的是在交易所里的证券交易。一般的,在交易所交易需要有交易资格,也就是交易席位,只有机构才有资格获取交易席位,这个是需要向交易所申请并购买的。普通投资者是通过在证券公司开户,这样就可以自动获得证券公司提供的交易资格,从而实现交易。一般有些对速度要求高的机构投资者,会向交易所申请购买独有的交易席位,直连交易所,无需通过证券公司第三方,从而实现更高的交易速度。 ...原创 2019-06-29 19:13:47 · 2432 阅读 · 0 评论 -
vnpy框架的策略开发和回测逻辑详解---以螺纹钢主力合约的R-breaker日内策略为例
笔者之前写过一篇关于vnpy的简单介绍和安装方法,本篇文章的目的是简单介绍vnpy的框架,然后详细介绍一下如何用vnpy开发自己的量化策略以及整个的回测逻辑是怎么样的。只有我们真的搞清楚了框架结构和相关的逻辑,我们才可以比较灵活高效的使用这种开源框架。 vnpy是开源的,好处是显而易见的,我们可以自己修改和增加相关的功能,个性化定制;但是弊端就是,对于我这样的一个初级...原创 2018-08-03 00:08:04 · 13065 阅读 · 3 评论