背景:
这篇文章,就是整理看懂拉普拉斯变换需要用到的各种知识点,无它。
要看懂拉普拉斯变换,要先知道傅立叶变换,
要看懂傅立叶变换,要先知道复指数函数,
要看懂复指数函数,就先知道欧拉公式。
要看懂欧拉公式,就要先知道复指数函数的泰勒展开式。
要看懂复指数函数的泰勒展开式,就要先知道泰勒级数。
所以:
在了解拉普拉斯变换之前,先要了解欧拉公式,泰勒级数展开,指数函数的泰勒展开式。
知识从来不是孤立存在的,总有着千丝万缕的联系,这大概就是以点带面的含义吧。
泰勒级数:
指数函数泰勒展开:
按泰勒级数公式展开指数,所以:
欧拉公式:
将复指数函数按泰勒级数展开,就能得到欧拉公式。
知道欧拉公式后,把θ换为ωt。变为,就能知道复指数函数为啥是连续的旋转运动了。
- ω 决定了旋转的快慢(频率)。单位是 弧度每秒(rad/s)。
- 如果 ω>0,向量逆时针旋转;如果 ω<0,则顺时针旋转
复指数函数:
知道欧拉公式,再看复指数函数的形象表示如下图(注意横坐标、纵坐标的含义):取不同的时间t,在复平面画出来,复指数最后表现出来的现象:就是一个连续旋转的圆,直径1,旋转的快慢就是w决定。
傅利叶变换:
先上公式,如下:
听的最多的就是:是自然界的很多函数曲线,都可以用三角函数进行分解。但是分解之后能干啥可能就不知道了。
傅立叶变换,就是把时间函数f(t)变成频率函数F(w)。就是横坐标由时间t,变成了w了(或者变成频率f,w=2πf),从w的方向来看函数f(t)。
根据欧拉公式,复指数在复平面的表现形式是圆,加上时间轴,就成3维的,就是沿时间轴拉伸的螺旋线,旋转的快慢,就看频率大小。频率大,就旋转快,频率小就旋转的慢。
再看傅利叶变换公式。它就是有无数个这种不同旋转速度的螺旋组成的。只是,在不同的视角,你看的形状就不一样了,比如从上往下看,从左往右看,从右往左看这3个方向,在同一时刻,3个视角看到的图像肯定是不一样的。有无数个这个的螺旋。
想像一下,下图(频率域那个方向,省略了的螺旋,我不会画,画出来也会很乱,估计要动画才好看,只能靠想像了),频率域方向就是无数个螺旋(彩色曲线绕时间轴旋转,沿时间轴前进),在垂直时间轴这个侧面(左侧),看到的就是一条条正弦或余弦曲线。
从这里窃的一张图,里面有动画,便不是很完美,https://zhuanlan.zhihu.com/p/428783752
全部叠加后,就是我们看到一条函数曲线f(t)(图中最前面的黑色,一坨曲线,当然,实际我们只看到一条线,这里只是为了表示它是很多叠加的)。黑色背后的彩色曲线,就是傅立叶变换分分析出来的不同频率点的曲线。就是所谓的时域-频域转换。
既然有个傅立叶变换,可以用三角函数进行分解所有的函数,为啥还要拉普拉斯变换?因为这个结论不对,它不能分析所有的函数,只能对符合一定条件的函数才能进行傅立叶变换。不符合条件的就不行。拉普拉斯变换的本质意义(好文!通俗易懂)-CSDN博客
它要满足狗粮利赫里条件的函数,才可以用傅立叶转换,比如f(x)=x^2,就不满足第3个条件,就不能用傅立叶变换。
所以就有的拉普拉斯变换。
拉普拉斯变换
先上公式:
是不是和傅立叶变换公式很像,但又说不出来,哪里不一样,对比一下。
至于拉普拉斯做了啥,可以再看这个文档,https://zhuanlan.zhihu.com/p/40783304有动画,形象一些。
总结来说就是:傅里叶变换有局限性,必须满足狄利赫里条件,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数f(x)=x^2 就无法进行傅里叶变换。聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于 时原函数也衰减到零了,从而满足绝对可积。
至于拉普拉斯变换用在什么地方,解决什么问题,可能还是不知道。