基于模型预测控制算法(MPC)用到的求解器对比(osqp/hpimp)

不同的应用实例中,可能调用不同的求解器,底层都是求解二次规划问题的求解器,本文做一个整理。

不同的求解器对应不同的调用模块,所以,相应的代码块也会不一样。

比如,有些仓库用HPIPM求解器:https://github.com/alexliniger/MPCC/tree/master

有些仓库用osqp求解器(当然,这个库的mpc算法运行报错,没调通):

https://github.com/CHH3213/chhRobotics_CPP

qpOASES没找到例子,就不说了。

从使用条件来看,osqp不需要正定、半正定要求,使用更广泛,就是用的人多,因为容易用。

求解器的比较

特性 HPIPM OSQP qpOASES
方法 内点法 直接法(ADMM) 主动集法
适用问题 稀疏 QP、块结构 稀疏 QP 小规模密集 QP
实时性 高&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值