高等数学精解【8】

直线与二元一次方程

平行

  • 两直线平等的条件是它们的斜率相同。
  • L 1 : A 1 x + B 1 y + C 1 = 0 L 2 : A 2 x + B 2 y + C 2 = 0 k 1 = − A 1 B 1 , k 2 = − A 2 B 2 k 1 = K 2 = > L 1 / / L 2 L_1:A_1x+B_1y+C_1=0 \\L_2:A_2x+B_2y+C_2=0 \\k_1=-\frac {A_1}{B_1},k_2=-\frac {A_2}{B_2} \\k_1=K_2=>L_1//L_2 L1:A1x+B1y+C1=0L2:A2x+B2y+C2=0k1=B1A1,k2=B2A2k1=K2=>L1//L2
    - 2 x − 9 y + 19 = 0 4 x − 18 y + 32 = 0 k 1 = − 2 − 9 = 2 9 = k 2 = − 4 − 18 = 2 9 L 1 / / L 2 2x-9y+19=0 \\4x-18y+32=0 \\k_1=- \frac 2 {-9}=\frac 2 9=k_2=-\frac 4 {-18}= \frac 2 9 \\L_1//L_2 2x9y+19=04x18y+32=0k1=92=92=k2=184=92L1//L2

垂直

  • 垂直的条件是斜率乘积为-1
  • L 1 : A 1 x + B 1 y + C 1 = 0 L 2 : A 2 x + B 2 y + C 2 = 0 k 1 = − A 1 B 1 , k 2 = − A 2 B 2 k 1 K 2 = − 1 = > L 1 ⊥ L 2 L_1:A_1x+B_1y+C_1=0 \\L_2:A_2x+B_2y+C_2=0 \\k_1=-\frac {A_1}{B_1},k_2=-\frac {A_2}{B_2} \\k_1K_2=-1=>L_1\bot L_2 L1:A1x+B1y+C1=0L2:A2x+B2y+C2=0k1=B1A1,k2=B2A2k1K2=1=>L1L2
  • L 1 : 26 x + 6 y + 11 = 0 L 2 : 3 x − 13 y + 52 = 0 k 1 = − 26 6 = − 13 3 , k 2 = − 3 − 13 = 3 13 k 1 K 2 = − 1 = > L 1 ⊥ L 2 L_1:26x+6y+11=0 \\L_2:3x-13y+52=0 \\k_1=-\frac {26}{6}=-\frac {13}{3},k_2=-\frac {3}{-13}=\frac {3}{13} \\k_1K_2=-1=>L_1\bot L_2 L1:26x+6y+11=0L2:3x13y+52=0k1=626=313,k2=133=133k1K2=1=>L1L2

题目

  • 过点(5,3),平行于7x-9y+3=0的直线方程
    7 x − 9 y + 3 = 0 , k = − 7 − 9 = 7 9 y − 3 = 7 9 ( x − 5 ) 9 y − 27 − 7 x + 35 = 0 − 7 x + 9 y + 8 = 0 7x-9y+3=0,k=-\frac 7 {-9}=\frac 7 9 \\y-3=\frac 7 9(x-5) \\9y-27-7x+35=0 \\-7x+9y+8=0 7x9y+3=0,k=97=97y3=97(x5)9y277x+35=07x+9y+8=0
  • 过点(5,3),垂直于7x-9y+3=0的直线方程
    7 x − 9 y + 3 = 0 , k = − 7 − 9 = 7 9 y − 3 = − 9 7 ( x − 5 ) 7 y − 21 + 9 x + 45 = 0 9 x + 7 y + 24 = 0 7x-9y+3=0,k=-\frac 7 {-9}=\frac 7 9 \\y-3=-\frac 9 7(x-5) \\7y-21+9x+45=0 \\9x+7y+24=0 7x9y+3=0,k=97=97y3=79(x5)7y21+9x+45=09x+7y+24=0

下面内容来自文心一言
点斜式方程是直线方程的一种表示形式,它基于直线上的一点和直线的斜率来定义直线。具体来说,如果直线经过点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0),且直线的斜率为 m m m,那么这条直线的点斜式方程可以表示为:

y − y 0 = m ( x − x 0 ) y - y_0 = m(x - x_0) yy0=m(xx0)

这里, m m m 是直线的斜率,它表示了直线倾斜的程度和方向。斜率 m m m 可以通过直线上任意两点的坐标来计算,公式为:

m = y 2 − y 1 x 2 − x 1 m = \frac{y_2 - y_1}{x_2 - x_1} m=x2x1y2y1

但在点斜式方程中,我们已知的是直线上的一个点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0) 和斜率 m m m,因此可以直接写出直线的方程。

点斜式方程的优点是直观且易于记忆,它直接关联了直线上的一个具体点和直线的斜率。此外,点斜式方程还可以方便地转化为其他形式的直线方程,如斜截式( y = m x + b y = mx + b y=mx+b)或一般式( A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0),以满足不同的解题需求。

需要注意的是,当直线垂直于x轴时,斜率 m m m
不存在(因为此时直线的倾斜角为90度,正切值无定义)。在这种情况下,直线方程不能表示为点斜式,而应该使用其他形式,如 x = k x = k x=k(其中
k k k 是直线与x轴交点的x坐标)。

点到直线距离

内容来自文心一言
点到直线的距离是一个重要的几何概念,它表示了从给定点到直线上所有点中最近的一个点的距离。对于直线的一般式方程 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0 和点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0),点到直线的距离 d d d 可以用以下公式计算:

d = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} d=A2+B2 Ax0+By0+C

这个公式是通过点到直线的向量投影和直线的法向量来推导的。具体来说,直线的法向量是 ( A , B ) (A, B) (A,B)(因为直线方程 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0 可以重写为 A ( x − x 1 ) + B ( y − y 1 ) = 0 A(x - x_1) + B(y - y_1) = 0 A(xx1)+B(yy1)=0,其中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 是直线上的一点,但在这个公式中我们不需要它),而点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0) 到直线上任意一点 ( x , y ) (x, y) (x,y) 的向量是 ( x − x 0 , y − y 0 ) (x - x_0, y - y_0) (xx0,yy0)。点到直线的距离就是该向量在法向量方向上的投影的绝对值。

另外,如果直线是用点斜式 y − y 0 = m ( x − x 0 ) y - y_0 = m(x - x_0) yy0=m(xx0) 表示的,我们可以先将其转化为一般式 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0(其中 A = m , B = − 1 , C = y 0 − m x 0 A = m, B = -1, C = y_0 - mx_0 A=m,B=1,C=y0mx0),然后再使用上面的公式来计算点到直线的距离。

需要注意的是,点到直线的距离总是非负的,因为距离是一个标量,没有方向。同时,这个公式也适用于直线与点平行(即点位于直线上)的情况,此时距离
d = 0 d = 0 d=0

  • 点(15,3)到直线7x-9y+3=0的距离
    d = ∣ 7 × 15 − 9 × 3 + 3 ∣ 7 2 + ( − 9 ) 2 = 7.10 \\d=\frac {|7\times15-9\times3+3|}{\sqrt{7^2+(-9)^2}}=7.10 d=72+(9)2 ∣7×159×3+3∣=7.10
julia> abs(7*15-9*3+3)/(sqrt(7^2+(-9)^2))
7.104169956386937

直线束

概述

  • 通过某点的所有直线全体称为直线束,它们的共同点称为束的中心
  • 具体来说,如果直线经过点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0),且直线的斜率为 k k k,那么这条直线的点斜式方程可以表示为:

y − y 0 = k ( x − x 0 ) y - y_0 = k(x - x_0) yy0=k(xx0)

将k视为参数,则可得到通过某点的所有直线,即以点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0)为中心的直线束

  • 通过两条束 的直线方程得到 中心点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0),再利用点斜式方程写出直线束方程。
    设直线束中的两条直线
    L 1 : A 1 x + B 1 y + C 1 = 0 L 2 : A 2 x + B 2 y + C 2 = 0 直线束方程 : A 1 x + B 1 y + C 1 + λ ( A 2 x + B 2 y + C 2 ) = 0 , λ ∈ R L_1:A_1x+B_1y+C_1=0 \\L_2:A_2x+B_2y+C_2=0 \\直线束方程:A_1x+B_1y+C_1+\lambda(A_2x+B_2y+C_2)=0,\lambda \in R L1:A1x+B1y+C1=0L2:A2x+B2y+C2=0直线束方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0,λR
  • 一直线通过两相交直线 3 x − 11 y + 7 = 0 , 5 x + 7 y − 12 = 0 的交点,且垂直于直线 y = 5 x − 8 。求该直线方程 一直线通过两相交直线3x-11y+7=0,5x+7y-12=0的交点,且垂直于直线y=5x-8。求该直线方程 一直线通过两相交直线3x11y+7=0,5x+7y12=0的交点,且垂直于直线y=5x8。求该直线方程
    3 x − 11 y + 7 + λ ( 5 x + 7 y − 12 ) = 0 = > 3 x + 5 λ x − 11 y + 7 λ y + 7 − 12 λ = 0 = > ( 3 + 5 λ ) x + ( − 11 + 7 λ ) y + 7 − 12 λ = 0 k = − 3 + 5 λ − 11 + 7 λ = 3 + 5 λ 11 − 7 λ y = x = > k 2 = 5 , k = − 1 5 3 + 5 λ 11 − 7 λ = − 1 5 − 15 − 25 λ = 11 − 7 λ 11 + 15 + 25 λ − 7 λ = 0 26 + 18 λ = 0 λ = − 26 18 = − 13 9 ( 3 + 5 λ ) x + ( − 11 + 7 λ ) y + 7 − 12 λ = 0 = > − 38 9 x + − 190 9 y + 7 + 52 3 = 0 再化简即可 3x-11y+7+\lambda(5x+7y-12)=0 \\=>3x+5\lambda x-11y+7\lambda y+7-12\lambda=0 \\=>(3+5\lambda)x+(-11+7\lambda)y+7-12\lambda=0 \\k=-\frac{3+5\lambda}{-11+7\lambda}=\frac {3+5\lambda}{11-7\lambda} \\y=x=>k_2=5,k=-\frac 1 5 \\\frac {3+5\lambda}{11-7\lambda}=- \frac 1 5 \\-15-25\lambda=11-7\lambda \\11+15+25\lambda-7\lambda=0 \\26+18\lambda=0 \\\lambda=-\frac{26}{18}=-\frac{13}{9} \\(3+5\lambda)x+(-11+7\lambda)y+7-12\lambda=0=>- \frac {38}{9}x+- \frac{190} 9y+7+\frac {52}3=0 \\再化简即可 3x11y+7+λ(5x+7y12)=0=>3x+5λx11y+7λy+712λ=0=>(3+5λ)x+(11+7λ)y+712λ=0k=11+7λ3+5λ=117λ3+5λy=x=>k2=5,k=51117λ3+5λ=511525λ=117λ11+15+25λ7λ=026+18λ=0λ=1826=913(3+5λ)x+(11+7λ)y+712λ=0=>938x+9190y+7+352=0再化简即可

下面内容来自文心一言

直线束的详细说明

一、定义

直线束(或直线系)是指具有某一共同性质的直线的集合。在平面几何中,直线束主要有两种类型:

  1. 中心直线束:指平面上通过一个固定点的所有直线的集合,此时固定点叫做束的中心,这个束本身叫做真的。
  2. 平行直线束:指平面上平行于一条已知直线的所有直线的集合,此时束的中心“落在无穷远处”,这个束叫做假的。

这两种直线束的定义均来源于百度百科等权威来源。

二、计算

直线束的计算通常涉及到直线方程的推导和参数的使用。

  1. 中心直线束

    • 假设已知点为(x0, y0),则通过该点的所有直线的方程可以表示为 λ 1 ( x − x 0 ) + λ 2 ( y − y 0 ) = 0 λ1(x-x0) + λ2(y-y0) = 0 λ1(xx0)+λ2(yy0)=0,其中λ1和λ2是不同时为零的参数。
    • 如果只用一个参数k表示斜率,则方程可以简化为 y − y 0 = k ( x − x 0 ) y-y0 = k(x-x0) yy0=k(xx0),但注意这个方程不包含垂直于x轴的直线(即x=x0)
  2. 平行直线束

    • 假设已知直线方程为Ax + By + C = 0,则与其平行的所有直线的方程可以表示为Ax + By + λ = 0,
      其中λ是参数。
  3. 直线束的计算通常涉及到线性方程的组合
    对于给定的两条直线 l 1 : A 1 x + B 1 y + C 1 = 0 l_1: A_1x + B_1y + C_1 = 0 l1:A1x+B1y+C1=0 l 2 : A 2 x + B 2 y + C 2 = 0 l_2: A_2x + B_2y + C_2 = 0 l2:A2x+B2y+C2=0
    含有参数 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2(不同时为零)的方程
    λ 1 ( A 1 x + B 1 y + C 1 ) + λ 2 ( A 2 x + B 2 y + C 2 ) = 0 \lambda_1(A_1x + B_1y + C_1) + \lambda_2(A_2x + B_2y + C_2) = 0 λ1(A1x+B1y+C1)+λ2(A2x+B2y+C2)=0 表示由
    l 1 l_1 l1 l 2 l_2 l2 决定的直线束。

  • l 1 l_1 l1 l 2 l_2 l2 相交时,该直线束是以交点为中心的直线束。
  • l 1 l_1 l1 l 2 l_2 l2 平行(但不重合)时,该直线束为平行直线束。

三、例子

例子1:中心直线束

设直线 l 1 : x + 3 y + 11 = 0 l_1: x + 3y + 11 = 0 l1:x+3y+11=0 l 2 : 5 x + 2 y + 6 = 0 l_2: 5x + 2y + 6 = 0 l2:5x+2y+6=0 相交于点 P P P,则过点 P P P
的所有直线的集合构成一个中心直线束。设该直线束的方程为 λ 1 ( x + 3 y + 11 ) + λ 2 ( 5 x + 2 y + 6 ) = 0 \lambda_1(x + 3y + 11) + \lambda_2(5x + 2y + 6) = 0 λ1(x+3y+11)+λ2(5x+2y+6)=0

例子2:平行直线束

设直线 l : 2 x − 3 y + 5 = 0 l: 2x - 3y + 5 = 0 l:2x3y+5=0,则与 l l l 平行的所有直线的集合构成一个平行直线束。该直线束的方程可以表示为 2 x − 3 y + λ = 0 2x - 3y + \lambda = 0 2x3y+λ=0,其中 λ \lambda λ 是任意实数。

四、例题

例题:求经过点 ( 2 , 3 ) (2,3) (2,3) 及两直线 x + 3 y + 11 = 0 x + 3y + 11 = 0 x+3y+11=0 5 x + 2 y + 6 = 0 5x + 2y + 6 = 0 5x+2y+6=0 交点的直线 L L L 的方程。

  1. 设所求直线 L L L 的方程为 λ 1 ( x + 3 y + 11 ) + λ 2 ( 5 x + 2 y + 6 ) = 0 \lambda_1(x + 3y + 11) + \lambda_2(5x + 2y + 6) = 0 λ1(x+3y+11)+λ2(5x+2y+6)=0
  2. 由于直线 L L L 过点 ( 2 , 3 ) (2,3) (2,3),代入得 2 λ 1 + 9 λ 1 + 11 λ 1 + 10 λ 2 + 6 λ 2 = 0 2\lambda_1 + 9\lambda_1 + 11\lambda_1 + 10\lambda_2 + 6\lambda_2 = 0 2λ1+9λ1+11λ1+10λ2+6λ2=0,即 21 λ 1 + 16 λ 2 = 0 21\lambda_1 + 16\lambda_2 = 0 21λ1+16λ2=0
  3. 由于 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2 不同时为零,可以取 λ 1 = 16 , λ 2 = − 21 \lambda_1 = 16, \lambda_2 = -21 λ1=16,λ2=21(答案不唯一,只要满足比例关系即可)。
  4. 因此,所求直线 L L L 的方程为 16 ( x + 3 y + 11 ) − 21 ( 5 x + 2 y + 6 ) = 0 16(x + 3y + 11) - 21(5x + 2y + 6) = 0 16(x+3y+11)21(5x+2y+6)=0,化简得 4 x − y − 5 = 0 4x - y - 5 = 0 4xy5=0

通过以上说明,我们可以清晰地理解直线束的定义、计算、例子和例题,从而更好地掌握这一重要的数学概念。

参考文献

1.《高等数学讲义》
2.文心一言

  • 29
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值