实变函数精解【17】

lebesgue可测

lebesgue可测函数积分的三种表示方法

  • 对可测集 E 上的有界可测函数 f ( x ) , − M < f ( x ) < M , 有一串数列 { l i } i = 0 n ,使得 l 0 = − M , l i < l i + 1 , l n = M ,任取 ξ i ∈ [ l i , l i + 1 ] ,讨论和式 Σ ξ i m ( E ( l i ≤ f < l i + 1 ) ) δ = m a x 0 ≤ i ≤ n − 1 ( l i + 1 − l i ) → 0 时,极限是否存在。 对可测集E上的有界可测函数f(x),-M<f(x)<M,\\有一串数列\{l_i\}_{i=0}^n,使得l_0 = -M, \\l_i<l_{i+1},l_n=M,任取\xi_i\in [l_i,l_{i+1}],讨论和式 \\\Sigma \xi_i m(E(l_i\le f\lt l_{i+1})) \\\delta=max_{0\le i\le{n-1}}(l_{i+1}-l_i)\rightarrow 0时,极限是否存在。 对可测集E上的有界可测函数f(x),M<f(x)<M有一串数列{li}i=0n,使得l0=M,li<li+1,ln=M,任取ξi[li,li+1],讨论和式Σξim(E(lif<li+1))δ=max0in1(li+1li)0时,极限是否存在。
  • 对可测集 E 作任意划分 E = ∪ j = 1 m E j , E i ∩ E j = ∅ ( i ≠ j ) b j = i n f x ∈ E j f ( x ) , B j = s u p x ∈ E j f ( x ) 作对应于该划分的小和数 Σ j = 1 m b j m ( E j ) 与大和数 Σ j = 1 m B j m ( E j ) 讨论其大和数的下限和小和数的上限是否相同 对可测集E作任意划分 \\E=\cup_{j=1}^mE_j,E_i\cap E_j=\emptyset(i\ne j) \\b_j=inf_{x\in E_j}f(x),B_j=sup_{x \in E_j}f(x) \\作对应于该划分的小和数\Sigma_{j=1}^mb_jm(E_j)与大和数\Sigma_{j=1}^mB_jm(E_j) \\讨论其大和数的下限和小和数的上限是否相同 对可测集E作任意划分E=j=1mEj,EiEj=(i=j)bj=infxEjf(x),Bj=supxEjf(x)作对应于该划分的小和数Σj=1mbjm(Ej)与大和数Σj=1mBjm(Ej)讨论其大和数的下限和小和数的上限是否相同
  • 对于可测集 E 上的任给非负可测函数 f ( x ) , 存在一列单调递增的简单可测函数列 { φ k ( x ) = Σ i = 1 N ( k ) a i ( n ) χ E j ( x ) } 其中, E i ( k ) ∩ E i ( k ) = ∅ ,当 i ≠ j , 使得 φ k ( x ) → f 对于每个简单函数 φ k ( x ) , 定义其积分为: Σ i = 1 N ( n ) a i ( n ) m ( E i ( n ) ) , 当 n → ∞ 时,该和式极限存在。 该和式极限称为非负可测函数 f ( x ) 的积分。 这种表示方法比较普遍 1 、关于特征函数 χ 在这里的作用是:如果 x ∈ E i ,则函数 χ 值为 1 ,否则为 0 。 为什么用这个 χ ,因为当定义上面的简单可测函数时,对于 E 中的每个 x , 都有一个对应的 a i ( n ) χ E i ( x ) , E i 中的所有的元素 x 的测度就是 m ( E i ( n ) ) 2 、 a i ( n ) 可理解为高, m ( E i ( n ) ) 是下面的底面测度(面积),两者乘积之和 Σ i = 1 N ( n ) a i ( n ) m ( E i ( n ) ) 就是积分,求出了 φ k ( x ) 下方的体积。 3 、 a i ( n ) χ E j ( x ) 实质是属于 E j 的每个元素 x 对应的 1 值乘以 a i ( n ) ,用上 Σ i = 1 N ( n ) 这样就可以把所有属于 E i 的每个元素组成的底面(每个元素假设面积为 1 , 可理解为面积,但在积分中才有面积一说,这里只是定义了一个函数而已) 乘以它们对应的 a i ( n ) ,求和后,得到一个函数 φ k ( x ) = Σ i = 1 N ( k ) a i ( n ) χ E j ( x ) 对于可测集E上的任给非负可测函数f(x), \\存在一列单调递增的简单可测函数列 \\\{\varphi_k(x)=\Sigma_{i=1}^{N^{(k)}}a_i^{(n)}\chi_{E_j}(x)\} \\其中,E_i^{(k)}\cap E_i^{(k)}=\emptyset,当i\ne j,使得\varphi_k(x)\rightarrow f \\对于每个简单函数\varphi_k(x),定义其积分为: \\\Sigma_{i=1}^{N{(n)}}a_i^{(n)}m(E_i^{(n)}),当n\rightarrow \infty时,该和式极限存在。 \\该和式极限称为非负可测函数f(x)的积分。 \\这种表示方法比较普遍 \\1、关于特征函数\chi在这里的作用是:如果x \in E_i,则函数\chi值为1,否则为0。 \\为什么用这个\chi,因为当定义上面的简单可测函数时,对于 E中的每个x, \\都有一个对应的a_i^{(n)}\chi_{E_i}(x),E_i中的所有的元素x的测度就是m(E_i^{(n)}) \\2、a_i^{(n)}可理解为高,m(E_i^{(n)})是下面的底面测度(面积),两者乘积之和\Sigma_{i=1}^{N{(n)}}a_i^{(n)}m(E_i^{(n)})\\就是积分,求出了\varphi_k(x)下方的体积。 \\3、a_i^{(n)}\chi_{E_j}(x)实质是属于E_j的每个元素x对应的1值乘以a_i^{(n)},用上\Sigma_{i=1}^{N{(n)}} \\这样就可以把所有属于E_i的每个元素组成的底面(每个元素假设面积为1,\\可理解为面积,但在积分中才有面积一说,这里只是定义了一个函数而已) \\乘以它们对应的a_i^{(n)},求和后,得到一个函数\varphi_k(x)=\Sigma_{i=1}^{N^{(k)}}a_i^{(n)}\chi_{E_j}(x) 对于可测集E上的任给非负可测函数f(x)存在一列单调递增的简单可测函数列{φk(x)=Σi=1N(k)ai(n)χEj(x)}其中,Ei(k)Ei(k)=,当i=j,使得φk(x)f对于每个简单函数φk(x),定义其积分为:Σi=1N(n)ai(n)m(Ei(n)),n时,该和式极限存在。该和式极限称为非负可测函数f(x)的积分。这种表示方法比较普遍1、关于特征函数χ在这里的作用是:如果xEi,则函数χ值为1,否则为0为什么用这个χ,因为当定义上面的简单可测函数时,对于E中的每个x都有一个对应的ai(n)χEi(x)Ei中的所有的元素x的测度就是m(Ei(n))2ai(n)可理解为高,m(Ei(n))是下面的底面测度(面积),两者乘积之和Σi=1N(n)ai(n)m(Ei(n))就是积分,求出了φk(x)下方的体积。3ai(n)χEj(x)实质是属于Ej的每个元素x对应的1值乘以ai(n),用上Σi=1N(n)这样就可以把所有属于Ei的每个元素组成的底面(每个元素假设面积为1可理解为面积,但在积分中才有面积一说,这里只是定义了一个函数而已)乘以它们对应的ai(n),求和后,得到一个函数φk(x)=Σi=1N(k)ai(n)χEj(x)

非负可测函数的积分

设 h ( x ) 是可测集 E ⊂ R n 上的非负可测简单函数。 h ( x ) = Σ j = 1 m a j χ E j ( x ) , ∀ x ∈ E 定义 h ( x ) 在可测集 E 上的积为 ∫ E h ( x ) d x = Σ j = 1 m a j m ( E j ) 此处的 d x 是 R n 上 l e b e s g u e 测度的标志 积分几何意义是: 函数 h ( x ) 的下方图 { ( x , y ) ∈ R n + 1 , x ∈ E , 0 ≤ y ≤ h ( x ) } 是 m 个高为 a j ,底面是 E j 的柱体。 h ( x ) 下方图的柱体就是函数 h ( x ) 为什么是 R n + 1 ,因为 d x 表示测度在 R n 中,但 y 的加入,所以 n + 1 若 a 是非负常数,则 ∫ E a h ( x ) d x = a ∫ E h ( x ) d x 设 g ( x ) 也是 E 上的非负简单可测函数,则 ∫ E ( h ( x ) + g ( x ) ) d x = ∫ E h ( x ) d x + ∫ E g ( x ) d x 设h(x)是可测集E \subset R^n上的非负可测简单函数。 \\h(x)=\Sigma_{j=1}^{m}a_j\chi_{E_j(x)},\forall x \in E \\定义h(x)在可测集E上的积为 \\\int_Eh(x)dx=\Sigma_{j=1}^ma_jm(E_j) \\此处的dx是R^n上lebesgue测度的标志 \\积分几何意义是: \\函数h(x)的下方图\{(x,y) \in R^{n+1},x\in E,0\le y \le h(x)\}是m个高为a_j,底面是E_j的柱体。 \\h(x)下方图的柱体就是函数h(x) \\为什么是R^{n+1},因为dx表示测度在R^n中,但y的加入,所以n+1 \\若a是非负常数,则 \\\int_Eah(x)dx=a\int_Eh(x)dx \\设g(x)也是E上的非负简单可测函数,则 \\\int_E(h(x)+g(x))dx=\int_Eh(x)dx+\int_Eg(x)dx h(x)是可测集ERn上的非负可测简单函数。h(x)=Σj=1majχEj(x),xE定义h(x)在可测集E上的积为Eh(x)dx=Σj=1majm(Ej)此处的dxRnlebesgue测度的标志积分几何意义是:函数h(x)的下方图{(x,y)Rn+1,xE,0yh(x)}m个高为aj,底面是Ej的柱体。h(x)下方图的柱体就是函数h(x)为什么是Rn+1,因为dx表示测度在Rn中,但y的加入,所以n+1a是非负常数,则Eah(x)dx=aEh(x)dxg(x)也是E上的非负简单可测函数,则E(h(x)+g(x))dx=Eh(x)dx+Eg(x)dx

  • 又设 { E k } 是 E 中递增可测子集合列,满足 lim ⁡ k → ∞ E k = E h ( x ) 是 E 上的非负可测简单函数 lim ⁡ k → ∞ ∫ E k h ( x ) d x = ∫ E h ( x ) d x 又设\{E_k\}是E中递增可测子集合列,满足\lim_{k\rightarrow \infty}E_k=E \\h(x)是E上的非负可测简单函数 \\\lim_{k\rightarrow\infty}\int_{E_k}h(x)dx=\int_Eh(x)dx 又设{Ek}E中递增可测子集合列,满足klimEk=Eh(x)E上的非负可测简单函数klimEkh(x)dx=Eh(x)dx
  • 又设 f ( x ) 是可测集 E 上的非负可测函数, ∫ E h ( x ) d x = s u p { ∫ E h ( x ) d x : h ( x ) 是 E 上非负简单可测函数 , 且 h ( x ) ≤ f ( x ) } ∫ E h ( x ) d x 可以等于 ∞ , 也可以 < ∞ 则称 f ( x ) 在 E 上是 l e b e s g u e 可积的,是 E 上的可积函数。 又设f(x)是可测集E上的非负可测函数, \\\int_Eh(x)dx=sup\{\int_Eh(x)dx:h(x)是E上非负简单可测函数,且h(x)\le f(x)\} \\\int_Eh(x)dx可以等于\infty,也可以<\infty \\则称f(x)在E 上是lebesgue可积的,是E上的可积函数。 又设f(x)是可测集E上的非负可测函数,Eh(x)dx=sup{Eh(x)dx:h(x)E上非负简单可测函数,h(x)f(x)}Eh(x)dx可以等于,也可以<则称f(x)E上是lebesgue可积的,是E上的可积函数。

非负可测简单函数

在测度论中,非负可测简单函数是一类特殊的函数,它们在处理积分和测度时具有重要的作用。下面,我们将详细定义并解释非负可测简单函数。

定义

( X , M , μ ) (X, \mathcal{M}, \mu) (X,M,μ) 是一个测度空间,其中 X X X 是集合, M \mathcal{M} M X X X 上的一个 σ \sigma σ-代数(或称为 σ \sigma σ-域), μ \mu μ M \mathcal{M} M 上的测度。一个函数 f : X → [ 0 , + ∞ ) f: X \to [0, +\infty) f:X[0,+) 被称为非负可测简单函数,如果它可以表示为有限个特征函数(或称为指示函数)的线性组合,即存在 E 1 , E 2 , … , E n ∈ M E_1, E_2, \ldots, E_n \in \mathcal{M} E1,E2,,EnM(这些集合两两不相交,且它们的并集是 X X X 的一个子集)和正数 c 1 , c 2 , … , c n c_1, c_2, \ldots, c_n c1,c2,,cn,使得

f ( x ) = ∑ i = 1 n c i χ E i ( x ) , ∀ x ∈ X , f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(x), \quad \forall x \in X, f(x)=i=1nciχEi(x),xX,

其中 χ E i \chi_{E_i} χEi 是集合 E i E_i Ei 的特征函数,定义为

χ E i ( x ) = { 1 , 如果  x ∈ E i , 0 , 如果  x ∉ E i . \chi_{E_i}(x) = \begin{cases} 1, & \text{如果 } x \in E_i, \\ 0, & \text{如果 } x \notin E_i. \end{cases} χEi(x)={1,0,如果 xEi,如果 x/Ei.

性质

  1. 非负性:由于 c i ≥ 0 c_i \geq 0 ci0 χ E i ( x ) \chi_{E_i}(x) χEi(x) 的取值只能是 0 或 1,因此 f ( x ) ≥ 0 f(x) \geq 0 f(x)0 对所有 x ∈ X x \in X xX 成立。

  2. 可测性:由于 E 1 , E 2 , … , E n E_1, E_2, \ldots, E_n E1,E2,,En 都是可测集,且特征函数 χ E i \chi_{E_i} χEi 在每个 E i E_i Ei 上取值为 1,在 E i E_i Ei 的补集上取值为 0,因此 χ E i \chi_{E_i} χEi 是可测函数。由于有限个可测函数的线性组合仍然是可测的,所以 f f f 也是可测的。

  3. 积分:非负可测简单函数的积分可以很容易地计算,因为

∫ X f   d μ = ∫ X ∑ i = 1 n c i χ E i   d μ = ∑ i = 1 n c i ∫ X χ E i   d μ = ∑ i = 1 n c i μ ( E i ) . \int_X f \, d\mu = \int_X \sum_{i=1}^{n} c_i \chi_{E_i} \, d\mu = \sum_{i=1}^{n} c_i \int_X \chi_{E_i} \, d\mu = \sum_{i=1}^{n} c_i \mu(E_i). Xfdμ=Xi=1nciχEidμ=i=1nciXχEidμ=i=1nciμ(Ei).

这个性质使得非负可测简单函数在积分理论中非常重要,因为它们可以用来逼近更一般的非负可测函数。

应用

非负可测简单函数在积分论和测度论中有广泛的应用。例如,在定义 Lebesgue 积分时,通常首先定义非负简单函数的积分,然后通过逼近的方法扩展到一般的非负可测函数,最后通过考虑正负部分扩展到所有可测函数。此外,非负可测简单函数在证明 Radon-Nikodym 定理等高级定理时也扮演着重要角色。

σ \sigma σ-代数

基础

(也称为 σ \sigma σ-域)是一个集合系统,它满足一系列特定的性质,这些性质使得它成为定义测度的基础。具体来说,一个集合 X X X上的 σ \sigma σ-代数 M \mathcal{M} M是一个包含 X X X的子集族,满足以下条件:

  1. 空集属于 M \mathcal{M} M:即 ∅ ∈ M \emptyset \in \mathcal{M} M

  2. 补集封闭:对于 M \mathcal{M} M中的任意集合 E E E,其补集 X ∖ E X \setminus E XE(或简写为 E c E^c Ec)也属于 M \mathcal{M} M

  3. 可数并集封闭:如果 { E n } n = 1 ∞ \{E_n\}_{n=1}^\infty {En}n=1 M \mathcal{M} M中的一个可数集合序列,那么它们的并集 ⋃ n = 1 ∞ E n \bigcup_{n=1}^\infty E_n n=1En也属于 M \mathcal{M} M

注意, σ \sigma σ-代数并不要求有限交集封闭(这是 σ \sigma σ-环或代数的要求),但它确实要求可数并集封闭,这是与代数(或 σ \sigma σ-环)的主要区别之一。

σ \sigma σ-代数在测度论中非常重要,因为它为定义测度提供了一个合适的集合系统。在定义了测度之后,我们可以进一步定义可测函数、积分等概念。

此外,值得注意的是,在某些文献中, σ \sigma σ-代数也被称为 σ \sigma σ-环(尽管这个术语更常见于包含有限交集封闭性质的集合系统)。然而,在更严格的上下文中, σ \sigma σ-环通常指的是满足有限交集封闭和可数并集封闭的集合系统,而 σ \sigma σ-代数则仅要求可数并集封闭和补集封闭。

最后,需要强调的是, σ \sigma σ-代数是定义在特定集合 X X X上的,它是 X X X的子集的一个特定集合族。因此,当我们谈论一个 σ \sigma σ-代数时,我们总是指在某个特定集合上定义的 σ \sigma σ-代数。

例子

首先,我们需要明确 σ \sigma σ-代数是在某个集合 X X X上定义的,它包含 X X X,对补集封闭,并且对可数并集封闭。

例子 1: 平凡 σ \sigma σ-代数

X X X是一个非空集合,那么最简单的 σ \sigma σ-代数是包含 X X X和空集 ∅ \emptyset 的集合族,即 { ∅ , X } \{\emptyset, X\} {,X}。这个 σ \sigma σ-代数被称为平凡 σ \sigma σ-代数。

例子 2: 有限集合的幂集

X = { a , b , c } X = \{a, b, c\} X={a,b,c}是一个有限集合,那么 X X X的幂集(即 X X X的所有子集的集合)是一个 σ \sigma σ-代数。幂集包含 X X X本身、空集 ∅ \emptyset ,以及 X X X的所有其他子集(如 { a } , { b } , { c } , { a , b } , { a , c } , { b , c } \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} {a},{b},{c},{a,b},{a,c},{b,c})。由于幂集对补集和可数并集(在这个情况下,可数并集实际上就是有限并集,因为集合是有限的)都封闭,所以它是一个 σ \sigma σ-代数。

例子 3: 可数集合的特定子集族

X = N X = \mathbb{N} X=N(自然数集),我们可以定义 M \mathcal{M} M X X X中所有有限集和余有限集(即补集为有限集的集合)的集合族。这个 M \mathcal{M} M是一个 σ \sigma σ-代数:

  • 它包含 X X X(因为 X X X是无限集,可以视为余有限集的特殊情况,其补集是空集)。
  • 它包含空集 ∅ \emptyset (因为空集是有限集)。
  • 它对补集封闭:任何有限集的补集是余有限集,任何余有限集的补集是有限集或 X X X本身(如果余有限集是 N \mathbb{N} N的真子集)。
  • 它对可数并集封闭:有限个有限集的并集仍然是有限集;有限个余有限集的并集,如果它们的并集不是整个 X X X,则仍然是余有限集(因为并集的补集是这些余有限集补集的交集,而有限个有限集的交集仍然是有限集)。如果并集是整个 X X X,则它也属于 M \mathcal{M} M

注意,在这个例子中,我们实际上可以稍微放宽条件,允许可数多个余有限集的并集也属于 M \mathcal{M} M(尽管在这个特定情况下,可数多个不同余有限集的并集要么是 X X X本身,要么是另一个余有限集),但这已经超出了“有限集合和余有限集合”的原始定义。然而,按照 σ \sigma σ-代数的定义,这样的扩展是允许的,因为 σ \sigma σ-代数要求对可数并集封闭。

例子 4: 实数轴上的区间

X = R X = \mathbb{R} X=R(实数轴),我们可以定义 M \mathcal{M} M为所有形如 ( − ∞ , a ] (-\infty, a] (,a](其中 a ∈ R ∪ { + ∞ } a \in \mathbb{R} \cup \{+\infty\} aR{+})的区间的集合族。注意,这个集合族实际上并不构成一个 σ \sigma σ-代数,因为它不包含所有区间的补集(例如, [ a , + ∞ ) [a, +\infty) [a,+)不在其中)。但是,如果我们稍微修改定义,包括所有形如 ( − ∞ , a ] (-\infty, a] (,a] [ a , + ∞ ) [a, +\infty) [a,+) ( b , c ) (b, c) (b,c) ∅ \emptyset (其中 a , b , c ∈ R a, b, c \in \mathbb{R} a,b,cR b < c b < c b<c)的区间,那么我们就得到了一个 σ \sigma σ-代数(这实际上是实数轴上所有Borel集的生成 σ \sigma σ-代数的一个子集)。然而,为了简洁起见,我给出的原始定义并不构成一个 σ \sigma σ-代数。

参考文献

1.《实变函数与泛函分析》
2. 文心一言
3. chatgpt

  • 14
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值