Udemy Master the Code Interview(Day1)

今天学习了big O Notation.

 

Rule 1: 考虑最坏情况。

例如从一个array中查找某个元素,可以想象假设这个元素在最后,需要表脸这个array所有的元素。

Rule 2: 去掉常数。

Rule 3: 不同的输入对象要区别对待

也许有的答案是O(n1+n2)

Rule 4: 去掉不重要的项。

O(n^2 + n) = O(n^2)

程序就是算法加数据结构,好的代码具有可读性和可伸缩性。

伸缩性包括两个方面,速度和空间大小。一般速度和空间不可兼得,需要trade-off。

 

总结一下:

-Big Os-

O(1) 常数:程序中没有loop

O(log N): 通常查找算法中有logN, 当这个array已经排序好了(二分查找)

O(n)线性:for loop,在n个项目中遍历

O(n log(n)) log线性:通常是排序操作

O(n ^ 2):循环套循环,冒泡排序

O(2 ^ n): 迭代算法

O(n!): 每个项目都有一个循环

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值