今天学习了big O Notation.
Rule 1: 考虑最坏情况。
例如从一个array中查找某个元素,可以想象假设这个元素在最后,需要表脸这个array所有的元素。
Rule 2: 去掉常数。
Rule 3: 不同的输入对象要区别对待
也许有的答案是O(n1+n2)
Rule 4: 去掉不重要的项。
O(n^2 + n) = O(n^2)
程序就是算法加数据结构,好的代码具有可读性和可伸缩性。
伸缩性包括两个方面,速度和空间大小。一般速度和空间不可兼得,需要trade-off。
总结一下:
-Big Os-
O(1) 常数:程序中没有loop
O(log N): 通常查找算法中有logN, 当这个array已经排序好了(二分查找)
O(n)线性:for loop,在n个项目中遍历
O(n log(n)) log线性:通常是排序操作
O(n ^ 2):循环套循环,冒泡排序
O(2 ^ n): 迭代算法
O(n!): 每个项目都有一个循环