学习OpenCV——ORB & BRIEF(特征点篇)&Location

本文介绍了ORB(Oriented Brief)特征点检测器,它是基于FAST检测器和BRIEF描述符的,旨在提供旋转不变性和速度优势。文章详细阐述了ORB如何解决BRIEF的旋转不变性和噪声敏感性问题,并提供了性能对比,显示ORB在速度和性能上的优势。此外,还分享了ORB在透视变换定位中的应用及其优化建议。
摘要由CSDN通过智能技术生成

 

首先介绍什么是ORB:

(此部分转自http://www.cvchina.info/2011/07/04/whats-orb/

ORB是是ORiented Brief的简称。ORB的描述在下面文章中:

Ethan Rublee and Vincent Rabaud and Kurt Konolige and Gary Bradski,: an efficient alternative to SIFT or SURF, ICCV 2011

论文已经可以去google下载,OpenCV2.3中已经有了实现,WillowGarage有一个talk也提到了这个算法,因此我不揣浅陋,在这里总结一下。


Brief

Brief是Binary Robust Independent Elementary Features的缩写。这个特征描述子是由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。详细算法描述参考如下论文:

Calonder M., Lepetit V., Strecha C., Fua P.: BRIEF: Binary Robust Independent Elementary Features. ECCV 2010

注意在BRIEF eccv2010的文章中,BRIEF描述子中的每一位是由随机选取的两个像素点做二进制比较得来的。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。(为什么要强调这一点,因为下述的ORB对此作了改进。)

 

BRIEF的优点在于速度,缺点也相当明显:

1:不具备旋转不变性。

2:对噪声敏感

3:不具备尺度不变性。

ORB就是试图解决上述缺点中的1和2.

 

如何解决旋转不变性:

在ORB的方案中,是采用了FAST作为特征点检测算子。FAST应用的很多了,是出名的快,以防有人不知道,请看

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值