sklearn数值特征连续值处理2: 分位数切分quantile

本文介绍了如何使用pandas的qcut函数在sklearn中对连续数值特征进行分位数切分,以实现数据预处理。通过qcut可以将连续数值分布划分为多个区间,便于后续的机器学习模型训练。
摘要由CSDN通过智能技术生成
import pandas as pd

fcc_survey_df = pd.read_csv('fcc_2016_coder_survey_subset.csv',encoding='utf-8')
fcc_survey_df[['ID.x','Age','Income']].iloc[2:7]

在这里插入图片描述

import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
mpl.style.reload_library()
mpl.style.use('classic')
mpl.rcParams['figure.facecolor'] = (1,1,1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值