去噪自动编码器(DAE)

去噪自动编码器(DAE)是在传统自动编码器的基础上,通过向输入中注入噪声,然后利用含噪声的“腐坏”的样本去重构不含噪声的“干净”输入,这是与传统编码器的主要区别[47]。同时这种训练策略也使得DAE能够学习到更能反映输入数据的本质特征。传统自动编码器单纯依靠最小化输入与重构信号之间的误差来得到输入的隐含层特征表示,但这种训练策略并不能保证提取到数据的本质特征,因为单纯依靠最小化重构误差可能导致编码器学习到的特征仅仅是原始输入的复制。为避免上述问题,引入噪声注入策略,这就是DAE产生的动机。

助于形成输入的更高层特征表达。DAE模型结构如图4-4所示。可以看出,DAE仍然是通过最小化输入与重构信号之间的误差来对网络参数进行调整,这一点传统的自动编码器相同;不同的是,DAE的隐含层表示并不是由原始输入直接映射得到,而是由原始输入的“腐坏”版本得到。DAE按照一定比例将原始输入中的元素随机置零,对剩余元素不作处理,便得到了原始输入的“腐坏”版本。相当于向原始输入中引入一定比例的“空白”元素,减少了原始输入包含的信息;而DAE就是通过对和进行学习,尝试着去填补丢失的信息,进而学习到的数据结构,使得提取到的特征更能反映原始输入的特点。

多个DAE堆叠能够形成具有一定深度的SDAE。这时的SDAE并不能进行模式识别,因为它只是一个特征提取器,并不具有分类功能。为了使SDAE具有分类功能,需在其顶层添加分类器,如SVM、softmax等,并使用带标签的数据对SDAE进行有监督训练,最后使用利用BP算法对整个网络参数进行微调,便得到具有分类功能的SDAE,如图4-5所示。具体步骤如下:

Step1 初始化SDAE网络参数;

Step2 训练第一层DAE,将其隐含层作为第2个DAE的输入,并进行同样的训练,直到第n层DAE训练完成;

Step3 将训练好的n层DAE进行堆叠形成SDAE,向SDAE网络顶层添加输出层;

Step4 利用样本数据和标签对整个网络进行有监督的微调。

  • 12
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
以下是使用TensorFlow实现去噪自编码器(DAE)的示例代码: ```python import tensorflow as tf import numpy as np # 加载数据集 (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), np.prod(x_train.shape[1:]))) x_test = np.reshape(x_test, (len(x_test), np.prod(x_test.shape[1:]))) # 添加噪声 noise_factor = 0.5 x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.) x_test_noisy = np.clip(x_test_noisy, 0., 1.) # 定义模型 input_size = 784 hidden_size = 128 output_size = 784 input_data = tf.keras.layers.Input(shape=(input_size,)) hidden_layer = tf.keras.layers.Dense(hidden_size, activation='relu')(input_data) output_layer = tf.keras.layers.Dense(output_size, activation='sigmoid')(hidden_layer) model = tf.keras.models.Model(input_data, output_layer) model.compile(optimizer='adam', loss='binary_crossentropy') # 训练模型 model.fit(x_train_noisy, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test_noisy, x_test)) # 测试模型 decoded_imgs = model.predict(x_test_noisy) # 显示结果 import matplotlib.pyplot as plt n = 10 # 显示10个数字 plt.figure(figsize=(20, 4)) for i in range(n): # 原始图像 ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # 加噪后的图像 ax = plt.subplot(2, n, i + 1 + n) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # 解码后的图像 ax = plt.subplot(2, n, i + 1 + n * 2) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ``` 在这个例子中,我们使用了MNIST数据集,并将每个图像添加了50%的高斯噪声。模型使用一个128个隐藏节点的隐层和一个784个输出节点的输出层。训练过程中使用了Adam优化器和二元交叉熵损失函数。最终,我们将显示10个数字的原始图像、添加噪声后的图像和去噪后的图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值