1. rotation matrix
图像逆时针旋转
θ
\theta
θ的矩阵
Q
r
o
t
a
t
e
=
[
cos
θ
−
sin
θ
sin
θ
cos
θ
]
(1)
Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag1
Qrotate=[cosθsinθ−sinθcosθ](1)
- 为了方便计算和表达,我们用
I
I
I单位矩阵进行分析
I = [ 1 0 0 1 ] (2) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag2 I=[1001](2)
可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量逆时针旋转 θ \theta θ角度后,可以得到此时的角度
Q ′ [ 1 , 0 ] = [ cos θ sin θ ] (3) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag3 Q′[1,0]=[cosθsinθ](3)
Q ′ [ 0 , 1 ] = [ − sin θ cos θ ] (4) Q'[0,1]=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\tag4 Q′[0,1]=[−sinθcosθ](4)
所以可以得到 I I I单位向量在逆时针旋转 θ \theta θ后的旋转矩阵如下
1.1 结论
Q a n t i c l o c k w i s e = [ cos θ − sin θ sin θ cos θ ] (5) Q_{anticlockwise}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag5 Qanticlockwise=[cosθsinθ−sinθcosθ](5)
2 Givens 变换
- Givens 变换的作用是通过旋转,将制定的行上的系数变为0。
- 定义单位矩阵I
I = [ 1 0 0 1 ] (6) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag{6} I=[1001](6) - 单位矩阵I 可以在图像中用两个点表示 B 1 = [ 1 , 0 ] B_1=[1,0] B1=[1,0],变换后为 B 11 B_{11} B11; B 2 = [ 0 , 1 ] B_2=[0,1] B2=[0,1],变换后为 B 22 B_{22} B22
- 定义点
A
1
=
[
a
11
,
a
12
]
A_1=[a_{11},a_{12}]
A1=[a11,a12],经过旋转后得到的点为
A
11
=
[
a
11
2
+
a
12
2
,
0
]
A_{11}=[\sqrt{a_{11}^2+a_{12}^2},0]
A11=[a112+a122,0]
- 从上图可得
B 1 = [ 1 0 ] → B 11 = [ cos ( θ ) − sin ( θ ) ] (7) B_1=\begin{bmatrix}1\\\\0\end{bmatrix}\rightarrow B_{11}=\begin{bmatrix}\cos(\theta)\\\\-\sin(\theta)\end{bmatrix}\tag{7} B1= 10 →B11= cos(θ)−sin(θ) (7)
B 2 = [ 0 1 ] → B 22 = [ sin ( θ ) cos ( θ ) ] (8) B_2=\begin{bmatrix}0\\\\1\end{bmatrix}\rightarrow B_{22}=\begin{bmatrix}\sin(\theta)\\\\\cos(\theta)\end{bmatrix}\tag{8} B2= 01 →B22= sin(θ)cos(θ) (8)
2.2 总结
G i v e n s = Q c l o c k w i s e = [ cos θ sin θ − sin θ cos θ ] (9) Givens=Q_{clockwise}=\begin{bmatrix}\cos{\theta}&\sin{\theta}\\\\-\sin{\theta}&\cos{\theta}\end{bmatrix}\tag{9} Givens=Qclockwise= cosθ−sinθsinθcosθ (9)
3. reflection matrix
图像沿着直线 1 2 θ \frac{1}{2}\theta 21θ对称矩阵,反射矩阵
- 为了方便计算和表达,我们用
I
I
I单位矩阵进行分析
I = [ 1 0 0 1 ] (10) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag{10} I=[1001](10)
可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量关于 1 2 θ \frac{1}{2}\theta 21θ直线对称后,可以得到此时的坐标
Q ′ [ 1 , 0 ] = [ cos θ sin θ ] (11) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag{11} Q′[1,0]=[cosθsinθ](11)
Q ′ [ 0 , 1 ] = [ sin θ − cos θ ] (12) Q'[0,1]=\begin{bmatrix}\sin\theta\\-\cos\theta\end{bmatrix}\tag{12} Q′[0,1]=[sinθ−cosθ](12)
3.1 结论
Q r e f l e c t i o n = [ cos θ sin θ sin θ − cos θ ] (13) Q_{reflection}=\begin{bmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{bmatrix}\tag{13} Qreflection=[cosθsinθsinθ−cosθ](13)
4.0 小结
不管我们是通过那种旋转变换,都是为了消元准备,用数学表达如下
[
a
b
]
⇒
[
c
0
]
(14)
\begin{bmatrix}a\\\\b\end{bmatrix}\Rightarrow \begin{bmatrix}c\\\\0\end{bmatrix}\tag{14}
ab
⇒
c0
(14)