旋转和反射

一 概述

参见wiki(Coordinate_rotations_and_reflections)

旋转即为绕一个轴进行旋转,参见博文“三维旋转基础”,这里主要讨论反射,但是反射与旋转也存在一定的联系。

一个平面内的旋转可以通过组合一组的反射形成,如下图所示


直线L1和L2的夹角为a,角点为O,一点P经过L1反射得到P’,然后再经过L2反射得到P’’,这个时候POP’’的夹角为2a(等腰三角形被中垂线分割即可证明)。


现在定义绕原点旋转一个角度a为R(a)。同时对于一条通过原点并且与正X轴夹角为a的直线L,令它的反射为Ref(a)。二维形式下对应的矩阵分别为




反射矩阵Ref的证明参见下图



上图中,点P由直线OL进行反射得到P’,OL与x轴的夹角为θ,OP与x轴的夹角为β,OL与OP的夹角为α,可知经过反射后OP’与x轴的夹角为(θ+α)。令OP的长度为H,有:

x = Hcos(β)

y = Hsin(β)

θ = α + β

x’ = Hcos(θ+α) = Hcos(2θ-β) = Hcos(2θ)cos(β) + Hsin(2θ)sin(β) = cos(2θ)x + sin(2θ)y

y’ = Hsin(θ+α) = Hsin(2θ-β) = Hsin(2θ)cos(β) - Hcos(2θ)sin(β) = sin(2θ)x - cos(2θ)y


=> [x’ y’]’ = Ref(θ)*[x y]’ = [cos(2θ)  sin(2θ);sin(2θ) - cos(2θ)]*[x y]’


=> Ref(θ)= [cos(2θ)   sin(2θ);

       sin(2θ)  -cos(2θ)];



二 旋转矩阵和反射矩阵特性

1旋转矩阵和反射矩阵都是正交矩阵


2 旋转矩阵的行列式值为+1,反射矩阵的行列值为-1


3 旋转矩阵R(θ)的逆矩阵为R(-θ),反射矩阵的逆矩阵为其本身


4 旋转矩阵和反射矩阵可以相互转换

旋转矩阵和反射矩阵的这些特性推广到三维同样适用。
<think>嗯,我现在要解决的是POJ上关于旋转反射的题目。这类题目通常涉及几何变换,比如判断两个图形是否通过旋转反射相互得到。首先,我需要明确题目要求,可能需要比较两组点的坐标,确定它们是否可以通过这些变换相互转换。 首先,我应该考虑旋转的情况。旋转通常涉及到绕某个点(比如原点)旋转一定的角度,比如90度、180度或者270度。对于一个点(x, y),绕原点顺时针旋转90度后的坐标会变成(y, -x),逆时针的话可能是(-y, x)。而旋转180度则会是(-x, -y)。需要确认题目中的旋转角度是哪种,可能题目会规定特定的旋转角度,比如每次90度,或者任意角度。不过POJ的题目可能更倾向于固定角度的旋转,比如四个可能的旋转角度。 然后是反射的情况,反射通常是关于某条直线对称,比如x轴、y轴、或者直线y=x、y=-x。例如,关于x轴反射,点(x, y)会变成(x, -y);关于y轴则是(-x, y);关于y=x的话会是(y, x);关于y=-x的话可能是(-y, -x)。另外,题目中可能还允许关于某条特定直线的反射,比如原点对称,这时候点变成(-x, -y),不过这其实等同于旋转180度。 接下来,我需要考虑如何判断两组点是否可以通过这些变换得到彼此。一种常见的方法是将两组点标准化,比如找到它们的最小表示形式。例如,将每个点相对于某个基准点(比如质心)进行平移,使得基准点移到原点,然后应用可能的旋转反射,再比较处理后的点集是否相同。 具体步骤可能包括: 1. 首先检查两组的点数是否相同,如果不同直接排除。 2. 计算两组点的质心,并将所有点平移,使得质心在原点。这可以消除平移变换的影响,只考虑旋转反射。不过需要注意,原题是否允许平移变换?如果题目中的变换仅包括旋转反射而不包括平移,那么可能需要其他处理方式。或者题目可能允许组合变换,比如先平移后旋转,或者旋转后再平移,这时候可能需要更复杂的处理。 3. 将平移后的点集按某种方式排序,比如按极角排序,或者按坐标字典序排序,然后比较是否可以通过旋转反射得到对方。 4. 对于旋转的情况,生成所有可能的旋转后的点集,比如每次旋转90度,共四种可能,然后看是否有与目标点集匹配的情况。 5. 对于反射的情况,生成所有可能的反射后的点集,比如关于x轴、y轴、y=x、y=-x等反射,或者可能其他轴,然后检查是否匹配。另外,反射后可能还需要再旋转,所以可能需要组合反射旋转的可能性。 比如,假设题目是判断两个正方形是否通过旋转反射得到。这时,正方形的四个顶点经过旋转反射后的可能情况有多个。例如,一个正方形可能有8种对称情况(4种旋转,每种旋转反射两种,或者反射后的四种旋转?需要具体分析)。因此,对于两组点,需要生成所有可能的变换后的版本,然后检查是否与另一组匹配。 可能的实现步骤: - 对于输入的两组点AB,首先检查点数是否相同,否则直接输出不同。 - 将两组点的坐标分别处理,可能需要先排序,或者计算某种特征(如距离原点的距离等)。 - 然后对A的所有可能的旋转反射变换生成所有可能的点集,看是否有与B匹配的。 但如何高效生成这些变换呢?比如,对于每个点(x,y),旋转90度的变换可以应用多次,得到四个方向。反射的话可以生成反射后的坐标,再旋转得到其他可能情况。 例如,假设允许的变换包括:旋转0度、90度、180度、270度,以及这四种旋转后的反射。那么总共有8种可能的变换方式。对于每个点,应用这8种变换后,将整个点集排序后比较是否与目标点集一致。 具体来说,可能的变换包括: 1. 原始方向(不旋转) 2. 旋转90度 3. 旋转180度 4. 旋转270度 5. 反射后不旋转(比如关于x轴反射) 6. 反射旋转90度(相当于反射后再旋转) 7. 反射旋转180度 8. 反射旋转270度 或者,可能反射后的旋转等同于其他反射。例如,反射旋转90度可能等价于另一种反射,比如关于y=x轴的反射?需要仔细分析旋转反射的组合。 不过为了编程实现,可以枚举这8种可能的变换。对于每个点,应用这8种变换,生成对应的坐标,然后将整个点集排序(比如按x坐标升序,x相同则按y升序),然后比较变换后的点集是否与目标点集相同。 但需要注意的是,点集可能没有固定的顺序,所以在比较时需要对点集进行排序,确保顺序不影响结果。 例如,假设原问题中的两组点,每组可能有n个点。对于每个点(x,y),生成所有可能的旋转后的坐标: 旋转0度:(x, y) 旋转90度顺时针:(y, -x) 旋转180度:(-x, -y) 旋转270度顺时针:(-y, x) 或者逆时针的话顺序不同,需要明确旋转方向。例如,逆时针旋转90度的话,变换矩阵是( −y, x ),这可能需要确认。 然后反射的情况:关于x轴反射是(x, -y),关于y轴反射是(-x, y),关于原点反射是(-x, -y)(等同于旋转180度),关于y=x反射是(y, x),关于y=-x反射是(-y, -x)。 不过,可能题目中的反射是关于某条特定的线,比如关于x轴或y轴,或者关于原点,或者任意线。但通常,在编程题中,反射可能被限定为关于x轴、y轴、或某个对角线。 比如,对于反射,可能的反射轴包括x轴、y轴、直线y=x、直线y=-x。这四种反射方式。然后每个反射后的点集可能再经过四个旋转角度,所以总共有4反射 *4旋转=16种情况?或者是否反射后再旋转等同于其他变换? 例如,先反射关于x轴,再旋转90度可能等同于反射关于另一条轴。因此,可能需要枚举所有可能的组合,或者找到一组生成所有可能的变换的生成方式。 但这样的枚举可能会增加计算量,不过对于n较小的点集来说(比如n<=1000),可能还是可行的。 假设题目中的变换包括所有旋转(四个方向)反射(四个方向),那么总共有8种可能的变换方式。例如: 对于每个点,生成以下八种可能的变换: 1. 原始位置 (x, y) 2. 旋转90度 (y, -x) 3. 旋转180度 (-x, -y) 4. 旋转270度 (-y, x) 5. 反射关于x轴 (x, -y) 然后可能不需要旋转,或者是否反射后还要考虑旋转? 或者是否反射后还可以旋转?比如,反射后的点集再旋转不同的角度,是否属于不同的变换? 比如,可能正确的做法是:允许先反射,再旋转。这样总共有反射后的四种旋转情况,以及不反射的四种旋转情况,总共有8种可能性。这时候,对于每个点,需要生成这八种可能的变换,然后将整个点集应用同一种变换后,比较是否与目标点集相同。 举个例子,假设有一个点集A,经过某个变换(旋转反射)后变成点集B。那么需要枚举这8种可能的变换,将A中的每个点应用相同的变换,得到新的点集,然后检查是否与B相同。 具体步骤可能如下: 对于输入的两个点集AB: 1. 检查AB的点数是否相同。不同的话直接返回不相等。 2. 将点集AB分别按坐标排序(比如按x升序,x相同则按y升序),这样可以消除顺序的影响。 3. 对于每一种可能的变换方式(8种),将A中的每个点应用该变换,得到新的点集A_transformed。 4. 将A_transformed排序,与排序后的B比较。如果有一个变换后的结果与B相同,则说明可以通过该变换得到,返回存在这样的变换。 5. 如果所有变换都不匹配,则返回无法通过旋转反射得到。 但如何生成这八种变换呢? 比如,八种可能的变换包括: 不反射的情况下,四个旋转角度(0, 90, 180, 270度)。 反射的情况下(比如关于x轴反射),然后四个旋转角度。或者可能反射后的旋转等同于其他反射? 或者,另一种观点是,旋转反射的组合可以生成八个对称变换,这对应于正方形的对称群(即二面体群D4)。这个群包括四个旋转四个反射,总共有八个元素。因此,可能的变换方式应该是八种:四个旋转四个反射。但这里的反射是否包括不同轴的反射? 或者,可能四个反射是相对于不同轴的,比如关于x轴、y轴、y=x、y=-x轴的反射。此时,每个反射本身可以作为一个变换,而旋转后的反射可能等同于另一个反射。例如,反射旋转可能得到另一个反射的情况。 因此,生成八种变换的方式可能是: 四个旋转(0,90,180,270度),四个反射(关于x轴、y轴、y=x、y=-x轴),总共有八种变换。对于每一种变换,将点集应用该变换,然后比较是否与目标点集一致。 或者,是否反射后可以再旋转?例如,关于x轴反射之后,再旋转90度,是否属于另一种变换? 这个时候,可能需要生成所有可能的组合,但这样会导致更多的变换可能性。例如,反射之后再进行旋转,可能产生新的变换形式。因此,这可能会增加枚举的数量。 这时候,问题可能变得复杂。但根据POJ题目的常见处理方式,可能只需要枚举四个旋转四个反射,共计八种变换方式即可,无需考虑反射后再旋转的组合,因为反射后再旋转可能已经被包含在这八种情况中。 例如,关于x轴反射旋转90度,可能等同于关于y=x轴的反射,或者其他变换。这需要具体分析变换的组合。 为了简化问题,可能正确的做法是:枚举所有的八种可能的变换方式,其中四个是纯旋转,四个是纯反射,每个反射对应不同的轴。 那么,如何生成这八个变换呢? 对于每个点(x, y),八个变换后的坐标可以是: 旋转: 0度:(x, y) 90度顺时针旋转:(y, -x) 180度:(-x, -y) 270度顺时针旋转:(-y, x) 反射: 关于x轴反射:(x, -y) 关于y轴反射:(-x, y) 关于y=x反射:(y, x) 关于y=-x反射:(-y, -x) 这样总共有4旋转 +4反射=8种变换方式。这可能就是题目中所允许的所有变换方式。 因此,在程序中,对于每个点,生成这八种变换后的坐标,然后将整个变换后的点集排序,与目标点集比较。 例如,假设原题是POJ 1189,或者是其他题目,可能需要这样的处理方式。 接下来,我需要考虑如何实现这些变换。比如,对于每个点(x,y),生成八种可能的坐标,然后对于每一种变换类型,将整个点集的所有点应用相同的变换,得到新的点集,排序后比较是否等于目标点集。 例如,变换类型1:旋转0度,所有点保持不变。变换类型2:旋转90度,每个点变成(y, -x),等等。 但需要注意的是,当点集应用旋转反射后,可能整体的位置会发生变化,所以需要将变换后的点集进行排序,以消除点顺序的影响。 例如,原题可能给出两组点,判断是否可以通过旋转反射得到对方,而不管点的顺序如何。因此,在比较的时候,必须将点集按统一的方式排序。 这样,整个算法的步骤大致是: 1. 输入两组点AB,检查点数是否相同,否则返回不相等。 2. 对两组点进行标准化处理,例如平移质心至原点,但不确定是否需要。可能题目中的变换允许平移吗?假设题目中的变换仅包括旋转反射,不包括平移,则必须在不平移的情况下处理。或者,可能需要先平移至某个共同点,比如原点,以便比较。 3. 但如果是这样的话,可能需要将两个点集的质心平移到原点,然后再比较旋转反射后的情况。例如,如果变换包括旋转反射,那么可能允许平移变换吗?这需要看题意。如果题目中的变换只允许旋转反射,那么两组点必须能够通过旋转反射重合,而无需平移。因此,此时两组点的质心必须相同,否则不可能通过旋转反射得到对方。因此,在比较之前,可能需要先判断两组点的质心是否相同。如果质心不同,则直接返回不相等。否则,将点集平移到质心为原点,再进行比较。 但这一步可能需要更多的分析。例如,假设原题中的变换允许任意的旋转反射,但必须保持点集的位置,即旋转反射是绕原点的。或者,题目中的变换可能允许绕任意的中心点旋转反射,那么此时需要将两个点集平移到同一中心点,比如质心,然后再应用变换。这种情况下,处理起来更复杂,因为中心点可能不同。 例如,假设有一个点集A可以通过绕某个中心点旋转反射得到点集B,那么这个中心点可能不是原点。这时候,如何找到这样的中心点,并处理变换? 这可能大大增加题目的难度。例如,POJ 1259题目可能与此相关,但不确定。 因此,必须明确题目的具体要求。例如,在POJ 1259题目"The Same Problem"中,判断两个点集是否可以通过旋转反射得到,可能允许绕任意点的旋转或关于任意轴的反射。这种情况下,处理起来就比较复杂,因为需要考虑所有可能的旋转中心反射轴。 此时,可能的解决方案包括: - 计算两个点集的最小包围圆,如果半径不同则不可能。 - 找到两个点集的质心,然后将它们平移到原点,再进行比较。但是,质心的位置在旋转反射后可能发生变化吗? 例如,假设点集A绕某点旋转后得到点集B,那么它们的质心可能也会被旋转反射。因此,质心可能无法作为基准点。因此,这种方法可能不适用。 另一种方法是,对于两个点集AB,枚举点之间的对应关系,找到一个可能的变换,将A中的一个点映射到B中的某个点,然后验证其他点是否符合该变换。这种方法时间复杂度较高,但对于n较小的点集可能可行。 例如,假设点集AB各有n个点。对于每个点a_i在A中,假设它对应B中的点b_j,然后计算可能的旋转反射参数,接着验证其他点是否符合该变换。例如,如果a_i被旋转θ度到b_j,那么计算θ,并检查其他点是否也满足该旋转。这可能需要处理浮点精度问题,因为计算角度可能涉及三角函数。 或者,对于整数坐标的情况,可以尝试所有可能的变换方式。例如,对于二维平面上的点,可能的旋转变换矩阵只能是90度的整数倍,而反射则是关于坐标轴或对角线的。这时候,可能可以采用前面提到的八种变换方式,并将点集平移到某个共同点,比如第一个点的位置,然后再进行比较。 例如,可以将点集AB分别平移到以第一个点为原点,然后比较是否可以通过八种变换之一得到对方。但这样处理的话,当第一个点不同时,可能无法正确比较。或者,可以尝试所有可能的对应关系,将A中的每个点与B中的每个点对应,作为变换后的点,然后计算变换矩阵,并验证其他点是否符合。 例如,对于点集AB,选择一对点a1b1,假设a1经过某个变换得到b1。然后根据这两个点计算可能的变换参数,例如旋转角度或反射轴。接着,应用该变换到其他点,看是否都对应到B中的点。 这种方法需要处理的情况较多,但可能更通用。例如,当允许任意旋转反射时,需要找到对应的变换参数。 不过,这样的计算复杂度较高,尤其是当n较大时。因此,可能需要寻找更高效的方法。 回到原问题,可能POJ中的题目是要求绕原点旋转或者关于坐标轴反射,因此不需要考虑平移变换。这样,处理起来就比较简单。例如,假设题目中的变换是相对于原点的,那么两组点必须能够通过这八种变换中的一种得到对方。此时,只需将每个点应用这八种变换,生成变换后的点集,排序后比较即可。 例如,对于输入的两组点,分别进行以下步骤: 对于每个点(x, y): 生成八种变换后的坐标: 1. (x, y) → 不变换 2. (y, -x) → 顺时针旋转90度 3. (-x, -y) → 旋转180度 4. (-y, x) → 顺时针旋转270度 5. (x, -y) → 关于x轴反射 6. (-x, y) → 关于y轴反射 7. (y, x) → 关于y=x轴反射 8. (-y, -x) → 关于y=-x轴反射 然后,对于每一种变换方式(共八种),将点集A中的每个点应用该变换,得到新的点集A_transformed。然后将A_transformed排序,与排序后的B点集比较。如果存在任何一种变换方式使得两者相同,则返回存在,否则不存在。 但这样处理是否正确?例如,假设点集A通过某种变换得到B,那么对于每个点来说,变换方式必须一致。例如,所有点都必须应用相同的旋转反射方式。例如,不能有的点旋转90度,有的点反射,这显然不行。因此,必须对所有点应用同一种变换方式,然后整体比较。 因此,正确的做法是:枚举八种可能的全局变换方式(每个点都应用同一种变换),然后检查变换后的点集是否与目标点集相同。 这样,算法的大致流程是: 输入AB: if AB的点数不同,返回false 将AB中的点分别排序(例如,按x升序,x相同按y升序) 生成A的八种变换后的点集,每种变换都生成一个点集,并排序,然后检查是否与B的排序后点集相同。 如果有任意一种变换后的点集等于B,返回true,否则返回false。 但如何处理点的平移?例如,如果两个点集可以通过先平移,再旋转反射得到对方,那么上述方法将无法处理,因为变换是绕原点进行的。此时,可能需要将点集平移到原点,例如,将每个点减去质心的坐标,然后进行比较。 因此,正确的步骤可能包括: 1. 检查点集AB的点数是否相同,否则返回false。 2. 计算AB的质心(平均坐标)。 3. 将AB的所有点平移到质心为原点。 4. 将平移后的点集排序。 5. 枚举A平移后的八种变换,生成变换后的点集,并排序,然后与平移后的B点集比较。 例如,质心的计算方式是对所有点的x坐标求平均,y坐标求平均,得到质心(cx, cy)。然后每个点(x,y)平移后的坐标为(x - cx, y - cy)。这样,点集的质心被移动到原点。 这样处理的原因是,如果两个点集可以通过旋转反射得到对方,那么它们的质心也必须相同,因为这些变换不会改变质心的位置。因此,平移后的点集必须能够通过绕原点的旋转反射得到对方。 因此,这一步的处理是必要的,否则无法处理点集整体位置不同的情况。 例如,假设AB是两个相同的正方形,但位置不同。那么,它们的质心不同,经过平移后,它们的点集将位于原点周围,此时可以通过旋转反射得到对方。 因此,正确的步骤应包括平移质心到原点,然后再进行变换比较。 这样,整个算法的步骤是: 1. 检查AB的点数是否相同。不同则返回false。 2. 计算A的质心(cx_A, cy_A),B的质心(cx_B, cy_B)。 3. 检查AB的质心是否相同。如果不同,则无法通过仅旋转反射得到,因为质心必须保持相同。或者,是否允许平移?如果题目中的变换允许平移,那么可以先将点集平移到相同质心,再进行旋转反射。例如,若允许先平移,则可以将两个点集的质心都平移到原点,然后再比较旋转反射的可能性。 4. 平移后的A点集为每个点(x - cx_A, y - cy_A),平移后的B点集为每个点(x - cx_B, y - cy_B)。 5. 此时,如果原题中的变换允许先平移,那么平移后的两个点集必须能够通过旋转反射得到对方。此时,将两个点集的质心都平移到原点,然后比较是否可以通过旋转反射得到。 但原题是否允许平移呢?例如,题目可能要求判断两个点集是否通过旋转反射变换(不允许平移)得到对方,此时必须质心相同,否则直接返回false。或者题目允许先平移后变换,此时需要将两个点集平移到原点,再比较。 因此,这一步的处理取决于题目要求。例如,POJ 1259题目要求判断两个点集是否可以通过旋转(任意角度,绕任意点)或反射(关于任意直线)得到对方。此时,质心可能不同,因为可以绕不同的点旋转,或者关于不同的直线反射,导致质心位置改变。这时候,处理起来非常复杂。 但如果是另一个题目,例如POJ 3882,可能要求变换必须保持原点,不允许平移。这时候,质心必须相同,否则无法匹配。 因此,在解决具体题目时,必须明确题目的变换是否允许平移。例如,若题目中的变换仅包括旋转反射,不允许平移,那么必须满足两个点集的质心相同。否则,如果允许平移,那么可以通过平移质心到原点,然后再进行旋转反射。 因此,正确的处理步骤可能包括: 假设题目允许变换包括平移、旋转反射的组合,那么步骤可能如下: 1. 检查点数相同。 2. 将AB的质心平移到原点,得到A'B'。 3. 枚举A'的八种变换(四个旋转,四个反射),生成变换后的点集。 4. 检查变换后的点集是否与B'相同(允许任意顺序,因此需要排序后比较)。 这样,质心平移到原点后,剩下的旋转反射不需要平移即可完成比较。 但如果是题目中的变换不允许平移,则必须质心相同才能有可能通过旋转反射得到,否则直接返回false。 因此,这可能是一个关键点,需要根据具体题目来判断。例如,如果题目中允许平移,那么质心会被移动到原点,所以需要平移后的比较。否则,如果平移不被允许,那么质心必须相同,否则无法匹配。 假设现在处理的POJ题目允许平移后的旋转反射,例如,允许先平移再变换。那么,此时平移后的点集必须能够通过旋转反射得到对方。此时,平移后的质心都是原点,剩下的变换仅需要考虑旋转反射。 例如,POJ 1259 "The Same Problem" 就是这样的题目,它要求判断两个点集是否可以通过旋转、平移、缩放或反射得到。但如果是仅旋转反射,那么需要考虑是否允许平移。因此,必须查看具体题目的描述。 假设当前问题中的题目不允许平移,那么质心必须相同,否则直接返回false。如果质心相同,则将点集平移到质心为原点,然后应用变换。 回到当前的问题,用户并没有给出具体的题目编号,只是询问POJ上关于旋转反射的题目的一般情况。因此,我需要总结常见的解题思路。 综上,解决这类题目的步骤大致如下: 1. **预处理**:确保两个点集的大小相同,否则直接否定。 2. **质心处理**:计算两个点集的质心。如果题目允许平移变换,则将点集的质心平移到原点后再比较;否则,若质心不同,直接否定。 3. **生成变换**:枚举所有可能的旋转反射变换(通常八种)。 4. **应用变换**:对平移后的点集应用每种变换,并排序以消除顺序影响。 5. **比较点集**:检查变换后的点集是否与目标点集匹配。 在实现时,需要注意以下几点: - **精度问题**:浮点数坐标可能需要四舍五入或使用eps比较,但POJ题目可能使用整数坐标,简化处理。 - **排序方式**:点集的排序方式必须一致,通常按字典序排列。 - **变换的正确性**:确保每种变换的数学公式正确,例如旋转反射的坐标变换。 例如,针对整数坐标的情况,处理步骤可能更简单,不需要处理浮点误差。例如,将点集平移到质心时,如果坐标是整数,而质心可能不是整数,这会导致问题。此时,可能需要将点集的平移后的坐标乘以点数,以避免浮点运算。例如,质心为(cx, cy) = (sum_x / n, sum_y / n),平移后的坐标为(x_i - cx, y_i - cy)。如果原坐标是整数,n点的情况下,sum_xsum_y可能不是n的倍数,导致平移后的坐标为分数。此时,无法用整数处理,可能需要将所有坐标乘以n,转化为整数处理,或者在比较时允许浮点数的误差。 例如,假设点集AB的点数都是n,质心为(sum_x_A /n, sum_y_A /n)(sum_x_B /n, sum_y_B /n)。如果允许平移,则平移后的点集的每个点坐标应为(x_i - sum_x_A /n, y_i - sum_y_A /n),而点集B的坐标则为(x_j - sum_x_B /n, y_j - sum_y_B /n)。此时,为了比较点集是否相同,需要检查是否存在旋转反射,使得平移后的A点集变换后与平移后的B点集相同。 然而,这样的处理在编程中需要处理浮点数,而POJ的题目通常期望使用整数处理。因此,可能的解决方法是,将坐标缩放为整数,例如将所有坐标乘以n,使得平移后的坐标为整数。例如,平移后的点坐标变为(n*x_i - sum_x_A, n*y_i - sum_y_A),这样所有坐标都是整数。同样对点集B进行处理。然后,比较变换后的整数坐标是否相同。 例如,假设点集A的sum_x是Sx_A,sum_y是Sy_A,那么平移后的点坐标可以表示为 (n*x_i - Sx_A, n*y_i - Sy_A),这相当于将质心平移到原点,并缩放n倍。这样,平移后的坐标都是整数,可以避免浮点运算。 同样的处理方式应用于点集B。此时,比较两个点集的变换后的坐标是否匹配,可以通过整数运算完成,避免精度问题。 这是处理这类问题的一个常见技巧,特别是在需要避免浮点数的情况下。 例如,假设点数为n,那么平移后的坐标是n*(x_i) - Sx_A,n*y_i - Sy_A。这样,质心的坐标变为: 对于平移后的点集A,质心为 ( (sum (n*x_i - Sx_A))/n , ... ) = ( (n*sum x_i - n*Sx_A)/n , ... ) = (Sx_A - Sx_A, ...) = 0。因此,质心确实在原点,但坐标被放大了n倍。 这样处理后,比较两个点集时,只需将点集A的每个点应用变换后,与点集B的对应点(同样经过缩放平移)进行比较。 综上所述,解决这类题目的关键是: - 确定是否允许平移变换,并相应处理质心。 - 枚举所有可能的旋转反射变换。 - 应用变换后,正确比较点集是否相同。 最后,编写代码时需要注意以下几点: - **点的排序**:在比较之前,必须对点集进行排序,以确保点的顺序不影响结果。 - **变换的正确性**:确保每一种旋转反射的坐标变换公式正确。 - **精度处理**:如果涉及浮点数,使用适当的比较方式,比如允许一定的误差范围(eps)。 例如,在代码中,可以这样实现: 对于每个点(x,y),枚举八种变换,生成新的坐标。例如: 变换函数可能如下: def rotate90(x, y): return (y, -x) def rotate180(x, y): return (-x, -y) def rotate270(x, y): return (-y, x) def reflect_x(x, y): return (x, -y) def reflect_y(x, y): return (-x, y) def reflect_yx(x, y): return (y, x) def reflect_ynx(x, y): return (-y, -x) 然后,生成所有八种变换后的点集: transformed = [] for each point in A: apply transform and add to transformed list 将每个变换后的点集排序后,与B的排序后的点集比较。 如果允许平移,则需要在变换前将点集平移到质心。 综上,解决POJ中旋转反射相关题目的关键在于正确枚举所有可能的变换方式,并准确比较变换后的点集是否匹配,同时处理可能的平移变换问题。</think>在POJ的旋转反射类题目中,通常需要判断两个几何图形是否可以通过旋转反射变换相互得到。以下是解决这类问题的分步指南: --- ### **核心思路** 1. **预处理检查** - 若两点集的点数不同,直接判定不匹配。 2. **质心计算与平移** - 计算每个点集的质心 $(c_x, c_y) = \left(\frac{1}{n}\sum x_i, \frac{1}{n}\sum y_i\right)$。 - 将每个点平移到质心为原点的新坐标系,消除平移变换的影响。 - 若题目不允许平移变换(如仅允许绕原点旋转/反射),需直接比较原始坐标。 3. **枚举变换类型** - **旋转**:0°, 90°, 180°, 270°(共4种)。 - **反射**:关于x轴、y轴、直线 $y=x$、直线 $y=-x$(共4种)。 - 总共有 **8种变换** 需要枚举。 4. **应用变换并标准化** - 对平移后的点集应用每种变换,生成新坐标。 - 将变换后的点集按坐标排序(如字典序),以消除点顺序的影响。 5. **比较点集** - 若任意变换后的点集与目标点集匹配,则返回“是”;否则返回“否”。 --- ### **关键步骤详解** #### **1. 质心平移** 假设点集允许平移变换,需将每个点平移到质心为原点的坐标系: $$ (x'_i, y'_i) = (x_i - c_x, y_i - c_y) $$ #### **2. 变换公式** 对每个点 $(x, y)$,生成8种变换后的坐标: 1. **不旋转**:$(x, y)$ 2. **旋转90°**:$(y, -x)$ 3. **旋转180°**:$(-x, -y)$ 4. **旋转270°**:$(-y, x)$ 5. **反射x轴**:$(x, -y)$ 6. **反射y轴**:$(-x, y)$ 7. **反射 $y=x$**:$(y, x)$ 8. **反射 $y=-x$**:$(-y, -x)$ #### **3. 排序与比较** 将变换后的点按 $(x, y)$ 排序后,与目标点集按相同规则排序的结果逐点比较。 --- ### **代码实现要点** 1. **质心计算**:注意浮点精度问题,或通过整数缩放避免误差。 2. **变换枚举**:遍历8种变换,统一应用到所有点。 3. **排序规则**:确保两套点集的排序方式一致(如先按x升序,x相同则按y升序)。 --- ### **示例代码框架(伪代码)** ```python def is_same(A, B): if len(A) != len(B): return False n = len(A) # 计算质心 cx_A = sum(x for x, y in A) / n cy_A = sum(y for x, y in A) / n cx_B = sum(x for x, y in B) / n cy_B = sum(y for x, y in B) / n # 平移至质心为原点 A_translated = [(x - cx_A, y - cy_A) for x, y in A] B_translated = [(x - cx_B, y - cy_B) for x, y in B] # 生成B的排序后的点集 B_sorted = sorted(B_translated) # 定义8种变换 transforms = [ lambda x, y: (x, y), lambda x, y: (y, -x), lambda x, y: (-x, -y), lambda x, y: (-y, x), lambda x, y: (x, -y), lambda x, y: (-x, y), lambda x, y: (y, x), lambda x, y: (-y, -x) ] # 检查每种变换 for transform in transforms: A_transformed = [transform(x, y) for x, y in A_translated] A_sorted = sorted(A_transformed) if A_sorted == B_sorted: return True return False ``` --- ### **常见问题** 1. **精度问题**:若坐标为浮点数,需使用误差容忍(如 `1e-6`)进行比较。 2. **性能优化**:对大规模点集,预处理时可用哈希或特征值加速比较。 3. **变换组合**:某些题目可能允许组合变换(如反射旋转),需根据题意调整枚举方式。 通过上述方法,可系统化解决POJ中涉及旋转反射的几何变换问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值