待定系数法总结笔记(简写)

a64f6dd15e84485fb008f562d4f787b5.jpg

 

待定系数法(Lagrange 插值法)是一种常见的插值方法,可以通过已知的数据点来估计函数在其他位置的值。具体来说,它使用一组基函数(通常为多项式),并通过调整基函数的系数来逼近函数。对于使用 $n$ 个数据点的插值问题,待定系数法使用 $n$ 个基函数,每个基函数都在一个数据点处为 $1$,在其他数据点处为 $0$。然后,通过调整基函数的系数来得到一个多项式,使得它在所有数据点上都与原函数相等。 在 Python 中,可以使用 NumPy 库来实现待定系数法插值。具体来说,可以使用 `numpy.polyfit` 函数来拟合数据点,然后使用 `numpy.polyval` 函数来计算多项式在其他位置的值。 以下是一个简单的示例,使用待定系数法插值估计 $sin(x)$ 在 $[0, 2\pi]$ 区间内的值: ```python import numpy as np import matplotlib.pyplot as plt # 生成数据点 x = np.linspace(0, 2*np.pi, 10) y = np.sin(x) # 计算插值多项式 p = np.polyfit(x, y, 9) # 计算插值结果 x_interp = np.linspace(0, 2*np.pi, 100) y_interp = np.polyval(p, x_interp) # 绘制图像 plt.plot(x, y, 'ro') plt.plot(x_interp, y_interp, 'b-') plt.show() ``` 在这个示例中,我们首先生成了 $10$ 个数据点,然后使用 `numpy.polyfit` 函数来拟合这些数据点,得到一个 $9$ 次多项式。然后,我们使用 `numpy.polyval` 函数来计算这个多项式在 $[0, 2\pi]$ 区间内 $100$ 个位置的值,并将结果绘制成图像。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值