ViewBS 的工作流程

ViewBS

ViewBS 的工作流程

ViewBS 提供多个顶级命令,用于确定所需和最优参数。这些命令可分为两部分:甲基化报告和功能区域的数据可视化。

在甲基化报告部分中,提供多个顶级命令,可以生成关于读取覆盖度、甲基化水平分布、全局甲基化水平等报告。

在功能区域可视化部分中,用户应首先提供感兴趣区域。这些区域可以是功能元素,如基因、转座子(TE)或差异甲基化区域(DMR)。用户还应提供甲基化信息,这些信息是 BS-seq 对齐器(如 Bismark)的输出结果。

ViewBS 的工作流程如下:

安装

使用 conda 安装 [推荐]

安装 conda

首先,您需要按照以下链接的说明安装 miniconda:https://conda.io/en/latest/miniconda.html

情景 1

如果您想在现有的 conda 环境中安装 ViewBS,请运行:

conda activate <your_environment_name>
## 如果您想安装特定版本,
## 将 'viewbs' 替换为 'viewbs=<version_number>'(例如 'viewbs=0.1.10')
conda install -c bioconda viewbs
情景 2

如果您想在新的 conda 环境中安装 ViewBS,请运行:

## 您可以将 `env4viewbs` 更改为其他您想要的名称
conda create -n env4viewbs -c bioconda viewbs
## 激活环境
conda activate env4viewbs

使用 Docker 安装

docker pull xie186/viewbs
## 使用 "docker run <image name>" 替换 "ViewBS"。例如:
cd ViewBS_testdata/
docker run -v ${PWD}:/data -w /data bc1743f3418f ViewBS MethOneRegion --region chr5:19497000-19499600 --sample bis_WT.tab.gz,WT --sample bis_cmt23.tab.gz,cmt23 --outdir MethOneRegion --prefix chr5_19497000-19499600 --context CHG

## 1) ${PWD}:/data:表示将当前目录挂载到 Docker 镜像中的 /data
## 2) bc1743f3418f:镜像 ID(运行 `docker image ls` 获取镜像 ID)。

由于 docker 需要 root 访问权限,有时可能不可用。但 singularity 是一种替代软件。有关详细信息,请参见链接:https://github.com/xie186/ViewBS/wiki/Run-ViewBS-with-%60Docker%60-or-%60Singularity%60#singularity

逐步安装依赖项

下载最新版本:

https://github.com/xie186/ViewBS/releases/latest

为了简化依赖项的安装,开发了一个脚本。可以使用 perl INSTALL.pl 作为安装和检查依赖项的助手。

您也可以按照以下步骤逐步安装:

  1. 安装 htslib

  2. Perl 版本:>v5.8.7

  3. Perl 包:

    • Getopt::Long::Subcommand - 处理命令行选项,支持子命令和补全
    • Bio::DB::HTS::Tabix - 对底层 tbx C 方法的对象化访问
    • Bio::SeqIO - SeqIO 格式的处理程序
    wget https://raw.githubusercontent.com/xie186/ViewBS/master/ext_tools/cpanm
    chmod 755 cpanm
    cpanm --local-lib=~/perl5 local::lib && eval $(perl -I ~/perl5/lib/perl5/ -Mlocal::lib)
    ./cpanm Getopt::Long::Subcommand
    ./cpanm Getopt::Long (> 2.50)
    ./cpanm Bio::DB::HTS::Tabix 
    ./cpanm Bio::SeqIO
    
  4. R 版本:> 3.3.0

  5. R 包

    • ggplot2
    • pheatmap
    • reshape2
    • cowplot

    在 R 中安装所需的库:

    install.packages("ggplot2", dep=T)
    install.packages("cow
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值