深度学习中的精确率与召回率

本文介绍了深度学习中衡量模型性能的两个重要指标——精确率和召回率。精确率关注预测为正样本中实际为正的比例,而召回率则关注所有正样本中被正确预测的比例。理解这两个概念有助于优化模型的查准率和查全率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在理解深度学习中map的时候,有2个概念是绕不过去的:精确率和召回率。这2个概念都和正样本有关。其中:

精确率 反映的是查准率,就是说,对于你预测为正的样本,有多少它确实是正的样本,即:样本确实是真,你预测也为真 / (样本确实是真,你预测也为真+样本是假,你预测为真)的概率

\frac{true.pos<and>predic.pos}{(true.pos<and>predic.pos)+(ture.negative<but>predic.pos)},       即:\frac{true.pos}{true.pos+false.pos}

召回率 反映的是查全率,就是说,对于所有你针对正样本的预测结果,你预测它为正样本,占所有正样本的比例,即:样本确实是真,你预测也为真 / (样本确实是真,你预测也为真+样本确实是真,你预测它为假)的概率

### 深度学习中实现精确召回率计算 在深度学习项目中,为了评估模型的表现,通常会使用精确(Precision)和召回率(Recall),这两个指标对于分类问题尤为重要。下面展示了一个基于给定的真实标签`true_labels`以及预测标签`pre_labels`来计算精确召回率的方法。 #### 使用Python代码实现精确召回率的计算 ```python def calculate_precision_recall(true_labels, predicted_labels): """ 计算精确召回率 参数: true_labels (list): 真实标签列表. predicted_labels (list): 预测标签列表. 返回: tuple: 包含两个浮点数,分别为精确召回率. """ # 将真实标签转换成集合形式以便于操作 actual_positives = set(true_labels) # 获取真正例(TP), 假正例(FP) tp_fp_set = set(predicted_labels) # 计算TP(True Positive) true_positive = len(actual_positives.intersection(tp_fp_set)) # 如果没有任何预测,则返回0作为精确 try: precision = true_positive / len(tp_fp_set) except ZeroDivisionError: precision = 0 # 计算FN(False Negative),即未被正确识别出来的正类数量 false_negative = len(actual_positives.difference(tp_fp_set)) all_positives_count = len(actual_positives) # 如果不存在任何真实的阳性案例,则定义召回率为1或视具体情况而定 if all_positives_count == 0: recall = 1.0 else: recall = true_positive / all_positives_count return precision, recall # 测试函数 if __name__ == "__main__": y_true = [0, 1, 2, 0, 1, 2] # 真实类别 y_pred = [0, 2, 1, 0, 0, 1] # 模型预测的结果 p, r = calculate_precision_recall(y_true, y_pred) print(f"Precision={p:.4f}, Recall={r:.4f}") ``` 此段代码实现了从输入数据集中提取出真正的正样本(`actual_positives`),并通过比较预测结果集(`tp_fp_set`)得到真正例的数量(True Positives, TP)[^3]。接着分别通过除以总预测数目获得精确,以及除以总的正样本来获取召回率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值