train,dev,test数据集划分

这个dev应该就是验证集

 

 

### 实例分割中的 COCO 数据集划分 对于 COCO 数据集的实例分割任务,通常会按照训练集、验证集和测试集的方式进行数据划分。这种划分有助于模型在不同阶段的学习与评估性能。具体而言: #### 训练集 (train) COCO 数据集中提供了 `train2017` 文件夹作为训练集的一部分。这部分数据包含了大量标注好的图像及其对应的掩码信息,用于指导模型学习对象的形状以及位置特征[^1]。 #### 验证集 (val) 为了监控模型在未见过的数据上的表现并调整超参数,可以利用 `val2017` 中的内容充当验证集合。这些图片同样附带完整的标签描述文件以便计算各种评价指标如 AP(平均精度)等。 #### 测试集 (test) 不同于前两者可以直接访问全部细节,在实际竞赛或者工业应用场合下可能只会公开部分测试样本而隐藏其余真实情况直到最终提交评测时刻才会揭晓成绩排名状况;比如提到过的MS-COCO目标检测 challenge 就采用了类似的机制通过保留一部分称为 'test-dev' 的子集来进行公平比较[^2]。 以下是基于 PyTorch 的一个简单的数据加载器设置例子: ```python from torch.utils.data import DataLoader, Dataset import torchvision.transforms as transforms from pycocotools.coco import COCO class CocoInstanceSegmentationDataset(Dataset): def __init__(self, root_dir, annotation_file, transform=None): self.root_dir = root_dir self.coco = COCO(annotation_file) self.ids = list(sorted(self.coco.imgs.keys())) self.transform = transform def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) target = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] # 加载图像... def __len__(self): return len(self.ids) transform = transforms.Compose([ transforms.ToTensor(), ]) dataset_train = CocoInstanceSegmentationDataset(root_dir='path/to/train', annotation_file='annotations/instances_train2017.json', transform=transform) dataloader_train = DataLoader(dataset_train, batch_size=8, shuffle=True) ``` 上述代码片段展示了如何构建自定义的数据集类来处理来自 COCO 的实例分割问题,并且设置了相应的转换操作以适应深度学习框架的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值