训练集、验证集(dev)和测试集

  • 在模型训练的时候通常将我们所得的数据分成3部分:训练集、dev验证集和测试集
  • dev用来统计的那一评估指标、调节参数,选择算法;而test用来在最后整体评估模型性能
  • dev和训练集一起被输入到模型算法中,但又不参与模型训练,可以一边训练一边根据dev查看指标
  • dev和测试集都是用来评估模型好坏,但dev只能用来统计单一评估指标;而测试集能够提供更多的评估模型指标,如混淆矩阵、roc、召回率、F1 Score等
  • dev可以用来快速评估指标的,并及时做出参数调整,但不全面;而测试集能提供一个模型的完整评估报告,能更好的从多个角度评价模型的性能,缺点是比较费时,一般在dev把参数调整差不多后,才会用到测试集
  • dev和测试集要保持同一分布
  • 大数据时代以前,通常将数据按照8:1:1划分数据集,大数据时代(百万数量级),通常可以将数据按照98:1:1的比例划分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值