- 在模型训练的时候通常将我们所得的数据分成3部分:训练集、dev验证集和测试集
- dev用来统计的那一评估指标、调节参数,选择算法;而test用来在最后整体评估模型性能
- dev和训练集一起被输入到模型算法中,但又不参与模型训练,可以一边训练一边根据dev查看指标
- dev和测试集都是用来评估模型好坏,但dev只能用来统计单一评估指标;而测试集能够提供更多的评估模型指标,如混淆矩阵、roc、召回率、F1 Score等
- dev可以用来快速评估指标的,并及时做出参数调整,但不全面;而测试集能提供一个模型的完整评估报告,能更好的从多个角度评价模型的性能,缺点是比较费时,一般在dev把参数调整差不多后,才会用到测试集
- dev和测试集要保持同一分布
- 大数据时代以前,通常将数据按照8:1:1划分数据集,大数据时代(百万数量级),通常可以将数据按照98:1:1的比例划分
训练集、验证集(dev)和测试集
最新推荐文章于 2023-05-15 08:38:18 发布