模式识别 | 模型选择与集成学习

目录

1. Adaboost

2. 模型选择的基本原则

3. 分类器集成


本章PPT

1. Adaboost

  • 处理分类问题的思想

给定训练集,寻找比较粗糙的分类规则/弱分类器 要比寻找精确的分类规则要简单得多。从弱学习算法出发,反复学习,得 到一系列弱分类器;然后组合这些弱分类器,构成一个强分类器。

  • 基本做法

改变训练数据的概率(权重)分布(每个训练样本的采样频率),基于不同的训练数据的分布,调用弱学习算法来学习一系列分类器。

  • 两个问题

1)每轮训练中,如何改变训练数据的权值或分布?

提高那些被前一轮弱分类器分错的样本的权重,降低已经被正确分类的样本的权重。错分的样本将在下一轮弱分类器中得到更多关注。

2)如何将一系列的弱分类器组合成一个强分类器?

采用加权表决的方法。具体地,加大分类错误率较小的弱分类器的权重,使其在表决中起更大的作用。

  • 详细算法流程

输入训练数据集:

其中x_i\in R^d是样本特征向量,y_i \in \{+1,-1\}(二分类)。

输入一个弱学习算法。

1. 初始化训练数据的权值分布。

(x_i,y_i)假设训练数据集具有均匀分布的权重,也就是说,原始数据集T的每个样本在新数据集T_1中都会被采样,每个样本的采样频数u_{1i} =1(i=1,...,n),除以数据量n得到权值分布w_{1i} = 1/n (i=1,...,n).保证第一步能在原始数据上学习到基本分类器。

2. 在权值分布为D_m的训练集T_m上,学习得到基本分类器G_m(x),m=1,...,M(在训练集上的分类错误率最低)

1)计算G_m(x)的分类错误率:

上述两种形式是等价的,当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值