JAVA算法:棋盘覆盖算法(经典算法问题)

本文探讨了棋盘覆盖问题,这是一个经典的算法问题。通过分治法,将2^k×2^k的棋盘划分为四个2^(k-1)×2^(k-1)的子棋盘,并利用L型骨牌覆盖,递归解决每个子问题。最终,算法将棋盘逐步分解为1×1的子棋盘,实现问题的解决。程序运行展示了不同规模棋盘的覆盖情况。
摘要由CSDN通过智能技术生成

JAVA算法:棋盘覆盖算法(经典算法问题)

经典算法问题:在一个2^k×2^k (k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中可能出现的位置有4^k种,因而有4^k种不同的棋盘,下图(1)所示是k=2时16种棋盘中的一个。棋盘覆盖问题(chess cover problem)要求用图(2)所示的4种不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

图(1)

       
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值