JAVA算法:采用最少的步数(Step)到达二维矩阵的边界

本文介绍了一种使用动态规划算法解决的问题,即在给定的n x m矩阵中,从唯一值为2的单元格出发,如何以最少的步数到达边界。分析了动态规划的思路,并提供了程序运行结果。
摘要由CSDN通过智能技术生成

JAVA算法:采用最少的步数(Step)到达二维矩阵的边界

问题描述:

给定一个n x m矩阵,其中单元格的取值为0,或者1。0表示单元格为空;1表示单元格不为空。您的站位,在单元格中用2表示。

您可以垂直向上或向下、水平向左或向右移动到任何空单元格。

您的任务是找到能够到达该二维矩阵任何边界(边缘)的最小步数(Step)。

如果无法到达任何边界(边缘),请输出 -1。

注意:整个矩阵中只有一个值为2的单元格。

例如:

给定一个二维矩阵

  matrix[] = {1, 1, 1, 0, 1}
                  {1, 0, 2, 0, 1} 
                  {0, 0, 1, 0, 1}
                  {1, 0, 1, 1, 0} 
输出:2

解释:找到你的站位,然后向右移动,在向上移动,即可到达二维矩阵的边界。

给定一个二维矩阵

  matrix[] = {1, 1, 1, 1, 1}
                  {1, 0, 2, 0, 1} 
                  {1, 0, 1, 0, 1}
                  {1, 1, 1, 1, 1}
输出: -1 

解释:找到你的站位,你无法移动到该二维矩阵的边界。


问题分析

使用动态规划算法来解决该问题,思路如下:

  • 先找到你的站位
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值