算法题解:不邻接植花(JAVA代码)

不邻接植花(JAVA代码)

原题链接:1042. Flower Planting With No Adjacent https://leetcode.com/problems/flower-planting-with-no-adjacent/

有 N 个花园,按从 1 到 N 标记。在每个花园中,你打算种下四种花之一。

paths[i] = [x, y] 描述了花园 x 到花园 y 的双向路径。

另外,没有花园有 3 条以上的路径可以进入或者离开。

你需要为每个花园选择一种花,使得通过路径相连的任何两个花园中的花的种类互不相同。

以数组形式返回选择的方案作为答案 answer,其中 answer[i] 为在第 (i+1) 个花园中种植的花的种类。花的种类用  1, 2, 3, 4 表示。保证存在答案。

示例 1:

输入:N = 3, paths = [[1,2],[2,3],[3,1]]
输出:[1,2,3]
示例 2:

输入:N = 4, paths = [[1,2],[3,4]]
输出:[1,2,1,2]
示例 3:

输入:N = 4, paths = [[1,2],[2,3],[3,4],[4,1],[1,3],[2,4]]
输出:[1,2,3,4]
 

提示:

1 <= N <= 10000
0 <= paths.size <= 20000
不存在花园有 4 条或者更多路径可以进入或离开。
保证存在答案。


算法实现

package com.bean.algorithm.adv;

public class FlowerPlantingWithNoAdjacent {
	
	public int[] gardenNoAdj(int N, int[][] paths) {
		int[] rs = new int[N + 1];

		backtrack(1, rs, paths);
		int[] ans = new int[N];
		System.arraycopy(rs, 1, ans, 0, N);
		return ans;
	}

	private void backtrack(int t, int[] rs, int[][] paths) {
		for (int i = 1; i <= 4; i++) {
			rs[t] = i;
			if (ok(t, rs, paths)) {
				if (t + 1 < rs.length)
					backtrack(t + 1, rs, paths);
				break;
			}
			rs[t] = 0;
		}
	}

	private boolean ok(int t, int[] rs, int[][] paths) {
		for (int i = 0; i < paths.length; i++) {
			if (paths[i][0] == t && rs[paths[i][1]] == rs[t]) {
				return false;
			}
			if (paths[i][1] == t && rs[paths[i][0]] == rs[t]) {
				return false;
			}
		}
		return true;
	}
	
	public static void main(String[] args) {
		int N=4;
		int[][] paths=new int[][] {
			{1,2},
			{2,3},
			{3,4},
			{4,1},
			{1,3},
			{2,4}
		};
		
		FlowerPlantingWithNoAdjacent flower=new FlowerPlantingWithNoAdjacent();
		int[] result=flower.gardenNoAdj(N, paths);
		for(int i=0;i<result.length;i++) {
			System.out.print(result[i]+"\t");
		}
		System.out.println();
	}
}

程序运行结果:

1    2    3    4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值