信息科技伦理与道德0:课程安排

1 课程安排

分组讨论的议题如下:

1.1 生成对抗网络(GAN)

(1)GAN生成伪造人脸与身份冒用风险
算法原理:
GAN通过生成器(Generator)和判别器(Discriminator)的对抗训练,可以生成逼真的人脸图像(如StyleGAN系列)。
伦理讨论:

  • 身份安全:生成的虚拟人脸可能被用于注册虚假社交账号或实施诈骗,平台应如何检测?
  • 知情权:当AI生成的人脸被用于商业广告时,是否需标注"虚拟形象"?
  • 法律空白:使用GAN生成的"不存在的人"实施犯罪,法律该如何界定?

课程关联:李宏毅课程中GAN生成图像质量评估部分(如FID分数)可延伸讨论检测技术。

(2)Deepfake换脸技术的滥用防治
算法原理:
基于GAN的面部替换技术(如FaceSwap-GAN)可以实现视频中的人脸替换。
伦理讨论:

  • 虚假视频复仇:恶意制作的虚假视频,现有法律是否足够惩处?
  • 政治谣言:伪造政治人物演讲视频可能影响选举,平台应承担怎样的审核责任?
  • 技术反制:开发者是否有义务在算法中嵌入数字水印等追溯机制?

课程关联:课程中视频生成技术可与Deepfake案例结合讨论。

(3)医学影像生成的伦理边界
算法原理:
GAN可以生成逼真的医学影像(如CT、MRI图像)。
伦理讨论:

  • 科研诚信:研究者使用生成的"假数据"补充小样本研究,是否构成学术不端?
  • 医疗风险:若生成的病灶图像被用于误导AI诊断系统,责任如何划分?
  • 数据隐私:用GAN生成数据替代真实患者数据,是否完全规避了隐私问题?

课程关联:课程中医疗AI应用案例可结合此议题。

(4)艺术创作中的版权争议
算法原理:
GAN可以模仿特定艺术家的风格生成画作(如CycleGAN)。
伦理讨论:

  • 版权归属:GAN模仿在世艺术家风格产生的作品,收益应归谁?
  • 艺术价值:完全由AI生成的作品能否参加人类艺术竞赛?
  • 文化挪用:使用少数民族传统艺术风格生成商业作品是否构成剥削?

课程关联:课程中风格迁移(Style Transfer)技术可延伸此讨论。

1.2 强化学习(RL)

(1)自动驾驶中的道德困境与奖励函数设计
算法原理:
RL通过奖励函数(Reward Function)引导智能体学习最优策略,在自动驾驶中表现为路径规划、避障等决策。
伦理讨论:

  • 电车难题编程:当事故不可避免时,奖励函数应如何权衡"保护乘客"与"减少路人伤亡"?不同文化背景是否应有不同设定?
  • 责任归属:由算法自主决策导致的事故,法律责任应归于开发者、车主还是算法本身?
  • 透明度要求:消费者是否有权知晓车辆决策逻辑的具体参数?

课程关联:李宏毅课程中RL基础及奖励塑形(Reward Shaping)相关内容。
(2)个性化推荐系统的信息茧房效应
算法原理:
RL通过用户反馈(点击/停留时间)不断优化内容推荐策略。

伦理讨论:

  • 认知操纵:为最大化用户停留时间,算法主动推送极端内容,平台应承担何种责任?
  • 青少年保护:推荐系统导致未成年人短视频成瘾,是否需要强制设置"防沉迷系统"?
  • 民主风险:个性化推荐加剧社会群体认知割裂,如何平衡商业利益与公共利益?

课程关联:课程中基于RL的推荐系统优化方法。
(3)游戏AI对青少年行为的影响
算法原理:
RL训练的游戏NPC会自适应玩家水平调整难度和行为模式。

伦理讨论:

  • 成瘾设计:算法刻意制造"差一点就赢"的体验诱导持续游戏,是否应该规范?
  • 暴力模仿:高智能战斗AI可能强化玩家的攻击性行为,开发者有何种社会责任?
  • 消费诱导:RL驱动的动态定价系统(如抽卡概率调整)是否构成赌博?

课程关联:课程中游戏AI案例(如AlphaStar)与多智能体RL。

1.3 对抗攻击

(1)对抗样本攻击与医疗AI的安全性
算法原理:
对抗样本是通过对输入数据添加微小扰动(人眼不可见),使模型产生错误输出的技术(如FGSM、PGD攻击方法)。
伦理讨论:

  • 医疗误诊风险:若CT扫描图像被对抗扰动误导AI诊断为“健康”,患者可能延误治疗,谁应负责?
  • 防御义务:医院是否应强制要求AI系统通过对抗训练(Adversarial Training)认证?
  • 攻击者动机:黑客是否可能利用此技术欺骗医保系统牟利?

课程关联:李宏毅课程中对抗攻击章节(如“如何攻击一个神经网络”)可结合医疗影像案例。

(2)自动驾驶中的对抗样本攻击
算法原理:
通过贴纸或涂改路牌(物理世界对抗样本),使自动驾驶模型错误识别“停止标志”为“限速标志”。
伦理讨论:

  • 公共安全威胁:恶意攻击者低成本制造交通混乱,法律如何追溯责任?
  • 厂商责任:车企是否应在出厂前模拟所有可能的对抗场景?若因算力限制未能覆盖,是否算过失?
  • 伦理困境:若对抗攻击导致事故,责任归于攻击者、算法开发者还是传感器供应商?

课程关联:课程中提到的现实世界对抗样本(如Adversarial Patch)可延伸讨论。

(3)人脸识别系统的对抗样本与隐私权
算法原理:
特殊设计的眼镜或贴纸(如“对抗眼镜”)可让人脸识别系统无法识别真实身份。

伦理讨论:

  • 隐私保护工具:公众使用对抗样本技术规避监控,是否属于合理反抗?
  • 技术滥用:罪犯利用对抗样本逃避警方追踪,技术开发者是否应限制相关研究发表?
  • 监管矛盾:政府要求算法抗攻击,但公民希望用对抗样本保护隐私,如何平衡?

课程关联:课程中CNN与人脸识别技术结合对抗样本防御(如Defensive Distillation)。

1.4 推荐系统

(1)信息茧房与认知窄化
算法原理:
协同过滤(Collaborative Filtering)通过用户历史行为(如点击、购买)寻找相似用户/物品进行推荐,形成"喜欢A的人也喜欢B"的强化循环。
伦理讨论:

  • 民主风险:政治观点推荐导致选民认知极端化(如美国"QAnon"事件),平台是否应干预?
  • 职业发展限制:职场技能培训推荐系统持续推送相似内容,是否阻碍用户能力拓展?
  • 算法透明度:用户是否有权查看"为什么推荐这个"的具体依据?

课程关联:课程中矩阵分解(Matrix Factorization)与负采样技术。
(2)价格歧视与算法剥削
算法原理:
基于用户画像的协同过滤可以识别支付意愿(如频繁购买奢侈品用户获得更高定价推荐)。

伦理讨论:

  • 大数据杀熟:同一酒店房间对不同用户显示不同价格,是否构成消费欺诈?
  • 弱势群体剥削:向低收入人群推荐高利率消费贷,平台应承担何种责任?
  • 监管取证:动态定价算法如何留存决策日志供监管部门审查?

课程关联:课程中推荐系统的冷启动问题解决方案。
(3)文化霸权与多样性侵蚀
算法原理:
点击率(CTR)优化模型倾向于推荐主流文化内容(如好莱坞电影),导致长尾内容曝光不足。
伦理讨论:

  • 文化灭绝:少数民族语言内容因点击量低被系统边缘化,是否需人工加权?
  • 审美同质化:音乐推荐导致全球流行曲风趋同,如何保护艺术多样性?
  • 本地化悖论:跨境电商平台强制按地域过滤推荐,是否构成数字贸易壁垒?

课程关联:课程中推荐系统的探索-利用困境(Exploration-Exploitation Tradeoff)。
(4)敏感内容推荐的伦理边界
算法原理:
深度学习推荐系统通过内容嵌入(Embedding)建立语义关联,可能意外推荐敏感内容(如减肥食品→催吐教程)。
伦理讨论:

  • 自杀诱导:抑郁用户被连续推荐负面内容,平台是否应承担部分法律责任?
  • 伦理审查空白:AI自动生成的极端主义内容(如AI合成仇恨言论)该如何过滤?
  • 年龄分级失效:儿童模式推荐系统被暴力内容"概念漂移"渗透,如何防御?

课程关联:课程中自然语言处理在推荐系统的应用。
(5)就业歧视与算法偏见
算法原理:
职业推荐系统基于历史招聘数据训练,可能继承性别/种族偏见(如女性较少被推荐STEM岗位)。
伦理讨论:

  • 职场天花板:算法持续推荐行政类职位给女性用户,是否构成系统性歧视?
  • 残疾人排斥:简历筛选系统自动过滤非标准工作经历,如何保障公平?
  • 纠正成本:企业为消除推荐偏见需额外标注"反事实公平数据",应由谁承担?

课程关联:课程中处理数据偏差的去偏技术(Debiasing)。

1.5 自然语言处理

(1)深度伪造文本的信任危机
算法原理:
GPT-3等模型可生成语法完美但内容虚假的文本(如伪造新闻、学术论文)。

伦理讨论:

  • 学术诚信:学生提交AI生成的作业,如何区分"合理辅助"与"学术欺诈"?
  • 法律证据:AI生成的诽谤性内容能否作为法庭证据?如何追溯责任?
  • 历史篡改:用NLP批量改写历史文献(如殖民美化描述),谁有权监管?

课程关联:课程中文本生成(Text Generation)与困惑度(Perplexity)评估。
(2)机器翻译的文化失真
算法原理:
神经机器翻译(NMT)通过编码-解码结构生成译文,可能丢失文化特定表达。
伦理讨论:

  • 宗教冒犯:自动翻译将《圣经》"上帝"译成其他宗教的至高神,如何避免?
  • 文学消亡:小语种诗歌经机器翻译后韵律尽失,是否加速文化灭绝?
  • 地缘政治:翻译系统将"台湾是中国省份"强制改写,属于技术还是政治?

课程关联:课程中Seq2Seq模型与BLEU评分指标。
(3)语音合成的身份盗窃
算法原理:
Tacotron等模型可通过5秒样本克隆人声(如伪造CEO语音指令转账)。
伦理讨论:

  • 金融诈骗:银行如何验证电话客服是真人而非AI语音克隆?
  • 肖像权延伸:未经许可使用名人声音训练商业语音包,是否侵权?
  • 司法挑战:当声纹证据可被AI伪造,法庭如何采信录音?

课程关联:课程中声学模型(Acoustic Model)与梅尔频谱技术。

2 格式要求

每个题目均按:算法原理(技术背景)→ 2. 伦理讨论(问题与争议)。

3 参考视频

3.1 机器学习基础

https://space.bilibili.com/3546385131505733
(1)机器学习基本概念
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=2
(2)机器学习任务攻略
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=3
(3)类神经网络-局部最小值与批次batch
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=4
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=5
(4)类神经网络-自动调整学习率与损失函数
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=6
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=7
(5)浅谈机器学习原理
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=8

3.2 生成对抗网络

(1)生成式对抗网络-基本原理与WGAN
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=12
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=13
(2)生成式对抗网络-生成器效能评估与Cycle GAN
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=14
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=15

3.3 强化学习

(1)强化学习和机器学习
https://www.bilibili.com/video/BV15hw9euExZ/?spm_id_from=333.1387.homepage.video_card.click&vd_source=441ad40f52905c1c0e3edc58dc77030b
(2)Policy Gradient
https://www.bilibili.com/video/BV15hw9euExZ?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=2
(3)Actor Critic
https://www.bilibili.com/video/BV15hw9euExZ?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=3
(4)Reward shaping(回馈非常罕见怎么办?)
https://www.bilibili.com/video/BV15hw9euExZ?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=4
(5)如何从示范中学习?逆向强化学习
https://www.bilibili.com/video/BV15hw9euExZ?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=5

3.4 对抗攻击

(1)自然语言处理上的对抗攻击
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.sections&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=31
(2)来自人类的恶意攻击(对抗攻击)-1
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.sections&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=32
(3)来自人类的恶意攻击(对抗攻击)-2
https://www.bilibili.com/video/BV1YsqSY8EiW?spm_id_from=333.788.videopod.episodes&vd_source=441ad40f52905c1c0e3edc58dc77030b&p=33

3.5 推荐系统

推荐系统公开课——8小时完整版,讲解工业界真实的推荐系统
https://www.bilibili.com/video/BV1HZ421U77y/?spm_id_from=333.337.search-card.all.click&vd_source=441ad40f52905c1c0e3edc58dc77030b

3.6 自然语言处理

李宏毅NLP(自然语言处理)完整课程
https://www.bilibili.com/video/BV1hM4y157xX/?spm_id_from=333.337.search-card.all.click&vd_source=441ad40f52905c1c0e3edc58dc77030b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HenrySmale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值