主流视觉提取backbone

一、backbone

1.ResNet:

from __future__ import absolute_import

from torch import nn
from torch.nn import functional as F
from torch.nn import init
import torchvision
import torch

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']
class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)

class ResNet(nn.Module):
    __factory = {
        18: torchvision.models.resnet18,
        34: torchvision.models.resnet34,
        50: torchvision.models.resnet50,
        101: torchvision.models.resnet101,
        152: torchvision.models.resnet152,
    }

    def __init__(self, depth, pretrained=True, cut_at_pooling=False,
                 num_features=0, norm=False, dropout=0, num_classes=0):
        super(ResNet, self).__init__()
        self.pretrained = pretrained
        self.depth = depth
        self.cut_at_pooling = cut_at_pooling
        # Construct base (pretrained) resnet
        if depth not in ResNet.__factory:
            raise KeyError("Unsupported depth:", depth)
        resnet = ResNet.__factory[depth](pretrained=pretrained)
        resnet.layer4[0].conv2.stride = (1, 1)
        resnet.layer4[0].downsample[0].stride = (1, 1)
        self.base = nn.Sequential(
            resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool,
            resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4)
        self.gap = nn.AdaptiveAvgPool2d(1)

        self.conv2d = nn.Conv2d(2048, 768, kernel_size=1, stride=1)

        if not self.cut_at_pooling:
            self.num_features = num_features
            self.norm = norm
            self.dropout = dropout
            self.has_embedding = num_features > 0
            self.num_classes = num_classes

            out_planes = resnet.fc.in_features

            # Append new layers
            if self.has_embedding:
                self.feat = nn.Linear(out_planes, self.num_features)
                self.feat_bn = nn.BatchNorm1d(self.num_features)
                init.kaiming_normal_(self.feat.weight, mode='fan_out')
                init.constant_(self.feat.bias, 0)
            else:
                # Change the num_features to CNN output channels
                self.num_features = out_planes
                self.feat_bn = nn.BatchNorm1d(self.num_features)
            self.feat_bn.bias.requires_grad_(False)
            if self.dropout > 0:
                self.drop = nn.Dropout(self.dropout)
            if self.num_classes > 0:
                self.classifier = nn.Linear(self.num_features, self.num_classes, bias=False)
                init.normal_(self.classifier.weight, std=0.001)
        init.constant_(self.feat_bn.weight, 1)
        init.constant_(self.feat_bn.bias, 0)
        scale = 768 ** -0.5
        self.ln_post = LayerNorm(768)
        self.proj = nn.Parameter(scale * torch.randn(768, 512))
        if not pretrained:
            self.reset_params()

    def forward(self, x):
        bs = x.size(0)
        x = self.base(x)
        # x = self.conv2d(x)
        # # x = x.reshape(x.shape[0], x.shape[1], -1)
        # # x = x.permute(0, 2, 1)
        # x = self.gap(x)
        # # x = x.reshape(x.shape[0], x.shape[1], -1)
        # x = x.view(x.size(0), -1)
        # ln_proj = self.ln_post(x)
        # if self.proj is not None:
        #     proj = ln_proj @ self.proj
        # 
        # return x.unsqueeze(1),x.unsqueeze(1),proj.unsqueeze(1)
        
        x = x.view(x.size(0), -1)

        if self.cut_at_pooling:
            return x

        if self.has_embedding:
            bn_x = self.feat_bn(self.feat(x))
        else:
            bn_x = self.feat_bn(x)

        if (self.training is False):
            bn_x = F.normalize(bn_x)
            return bn_x

        if self.norm:
            bn_x = F.normalize(bn_x)
        elif self.has_embedding:
            bn_x = F.relu(bn_x)

        if self.dropout > 0:
            bn_x = self.drop(bn_x)

        if self.num_classes > 0:
            prob = self.classifier(bn_x)
        else:
            return bn_x

        return prob

    def reset_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm1d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)


def resnet18(**kwargs):
    return ResNet(18, **kwargs)


def resnet34(**kwargs):
    return ResNet(34, **kwargs)


def resnet50(**kwargs):
    return ResNet(50, **kwargs)


def resnet101(**kwargs):
    return ResNet(101, **kwargs)


def resnet152(**kwargs):
    return ResNet(152, **kwargs)

2.IBN-ResNet:

  1. resnet_ibn_a.py (基层):
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet50_ibn_a', 'resnet101_ibn_a']


model_urls = {
    'ibn_resnet50a': './model/backbone/pretrained_models/resnet50_ibn_a.pth.tar',
    'ibn_resnet101a': './logs/pretrained/resnet101_ibn_a.pth.tar',
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class IBN(nn.Module):
    def __init__(self, planes):
        super(IBN, self).__init__()
        half1 = int(planes/2)
        self.half = half1
        half2 = planes - half1
        self.IN = nn.InstanceNorm2d(half1, affine=True)
        self.BN = nn.BatchNorm2d(half2)

    def forward(self, x):
        split = torch.split(x, self.half, 1)
        out1 = self.IN(split[0].contiguous())
        out2 = self.BN(split[1].contiguous())
        out = torch.cat((out1, out2), 1)
        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        if ibn:
            self.bn1 = IBN(planes)
        else:
            self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        scale = 64
        self.inplanes = scale
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(scale)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, scale, layers[0])
        self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2)
        self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2)
        self.layer4 = self._make_layer(block, scale*8, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(scale * 8 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.InstanceNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        ibn = True
        if planes == 512:
            ibn = False
        layers.append(block(self.inplanes, planes, ibn, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, ibn))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnet50_ibn_a(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        print("pretrained true")
        state_dict = torch.load(model_urls['ibn_resnet50a'], map_location=torch.device('cpu'))['state_dict']
        state_dict = remove_module_key(state_dict)
        model.load_state_dict(state_dict)
    return model


def resnet101_ibn_a(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNelayer1t
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        state_dict = torch.load(model_urls['ibn_resnet101a'], map_location=torch.device('cpu'))['state_dict']
        state_dict = remove_module_key(state_dict)
        model.load_state_dict(state_dict)
    return model


def remove_module_key(state_dict):
    for key in list(state_dict.keys()):
        if 'module' in key:
            state_dict[key.replace('module.','')] = state_dict.pop(key)
    return state_dict
  1. resnet_ibn.py (代码修改过,forward对着resnet重新写):
from __future__ import absolute_import

import os

from torch import nn
from torch.nn import functional as F
from torch.nn import init
import torchvision
import torch

from .resnet_ibn_a import resnet50_ibn_a, resnet101_ibn_a

__all__ = ['ResNetIBN', 'resnet_ibn50a', 'resnet_ibn101a']


class ResNetIBN(nn.Module):
    __factory = {
        '50a': resnet50_ibn_a,
        '101a': resnet101_ibn_a
    }

    def __init__(self, depth, pretrained=True, cut_at_pooling=False,
                 num_features=0, norm=False, dropout=0, num_classes=0):
        super(ResNetIBN, self).__init__()

        self.depth = depth
        self.pretrained = pretrained
        self.cut_at_pooling = cut_at_pooling
        print(os.getcwd())
        resnet = ResNetIBN.__factory[depth](pretrained=pretrained)
        resnet.layer4[0].conv2.stride = (1,1)
        resnet.layer4[0].downsample[0].stride = (1,1)
        self.base = nn.Sequential(
            resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
        self.stage1 = resnet.layer1
        self.stage2 = resnet.layer2
        self.stage3 = resnet.layer3
        self.stage4 = resnet.layer4

        self.gap = nn.AdaptiveAvgPool2d(1)

        if not self.cut_at_pooling:
            self.num_features = num_features
            self.norm = norm
            self.dropout = dropout
            self.has_embedding = num_features > 0
            self.num_classes = num_classes

            out_planes = resnet.fc.in_features

            # Append new layers
            if self.has_embedding:
                self.feat = nn.Linear(out_planes, self.num_features)
                self.feat_bn = nn.BatchNorm1d(self.num_features)
                init.kaiming_normal_(self.feat.weight, mode='fan_out')
                init.constant_(self.feat.bias, 0)
            else:
                # Change the num_features to CNN output channels
                self.num_features = out_planes
                self.feat_bn = nn.BatchNorm1d(self.num_features)
            self.feat_bn.bias.requires_grad_(False)
            if self.dropout > 0:
                self.drop = nn.Dropout(self.dropout)
            if self.num_classes > 0:
                self.classifier = nn.Linear(self.num_features, self.num_classes, bias=False)
                init.normal_(self.classifier.weight, std=0.001)
        init.constant_(self.feat_bn.weight, 1)
        init.constant_(self.feat_bn.bias, 0)


        if not pretrained:
            print("not pretrained")
            self.reset_params()

    def forward(self, x, feature_withbn=False):
        bs = x.size(0)


        # calculate base_features
        x = self.base(x)
        x1 = self.stage1(x)
        x2 = self.stage2(x1)
        x3 = self.stage3(x2)
        x4 = self.stage4(x3)

        # reverse model
        f1 = self.f1(x1)
        f2 = self.f2(x2)
        f3 = self.f3(x3)
        f_g = self.gap(x4)

        f1 = f1.view(f1.shape[0], f1.shape[1], -1).permute(0, 2, 1)
        f2 = f2.view(f2.shape[0], f2.shape[1], -1).permute(0, 2, 1)
        f3 = f3.view(f3.shape[0], f3.shape[1], -1).permute(0, 2, 1)
        x4 = f_g.view(f_g.shape[0], f_g.shape[1], -1).permute(0, 2, 1)
        # print("f:", f1.shape, f2.shape, f3.shape, x4.shape)
        avg_f = torch.mean(torch.stack([f1, f2, f3, x4], dim=0), dim=0)

        sfa1 = self.attention(f1, f2, avg_f)
        sfa2 = self.attention(f3, x4, avg_f)
        sfa = self.attention(sfa1, sfa2, avg_f)
        # print(sfa.shape, f_g.shape)
        x = f_g.view(x.size(0), -1)
        sfa = sfa.view(sfa.size(0), -1)
        sfa += x
        if self.cut_at_pooling:
            return x

        if self.has_embedding:
            bn_x = self.feat_bn(self.feat(x))
        else:
            bn_x = self.feat_bn(x)
        sfa = self.bnneck_sfa(sfa)
        if (self.training is False):
            bn_x = F.normalize(bn_x)
            sfa = F.normalize(sfa)
            return bn_x, sfa

        if self.norm:
            bn_x = F.normalize(bn_x)
            sfa = F.normalize(sfa)
        elif self.has_embedding:
            bn_x = F.relu(bn_x)

        if self.dropout > 0:
            bn_x = self.drop(bn_x)

        if self.num_classes > 0:
            prob = self.classifier(bn_x)
            sfa_prob = self.classifier_sfa(sfa)
        else:
            return bn_x, sfa

        return bn_x, prob, sfa, sfa_prob

    def reset_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm1d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

        resnet = ResNetIBN.__factory[self.depth](pretrained=self.pretrained)
        self.base[0].load_state_dict(resnet.conv1.state_dict())
        self.base[1].load_state_dict(resnet.bn1.state_dict())

        self.stage1.load_state_dict(resnet.layer1.state_dict())
        self.stage2.load_state_dict(resnet.layer2.state_dict())
        self.stage3.load_state_dict(resnet.layer3.state_dict())
        self.stage4.load_state_dict(resnet.layer4.state_dict())


def resnet_ibn50a(**kwargs):
    return ResNetIBN('50a', **kwargs)


def resnet_ibn101a(**kwargs):
    return ResNetIBN('101a', **kwargs)

if __name__ == '__main__':
    net = resnet_ibn50a()
    print(net)

3.ViT(B/16,B/32,L/16,L/32):

"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDict
 
import torch
import torch.nn as nn
 
 
def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output
 
 
class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
 
    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
 
 
class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
 
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
 
    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
 
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x
 
 
class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)
 
    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape
 
        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
 
        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
 
        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
 
 
class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)
 
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
 
 
class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
 
    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x
 
 
class VisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
                 qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
                 attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_c (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            distilled (bool): model includes a distillation token and head as in DeiT models
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
        """
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU
 
        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches
 
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)
 
        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)
 
        # Representation layer
        if representation_size and not distilled:
            self.has_logits = True
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ("fc", nn.Linear(embed_dim, representation_size)),
                ("act", nn.Tanh())
            ]))
        else:
            self.has_logits = False
            self.pre_logits = nn.Identity()
 
        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
        self.head_dist = None
        if distilled:
            self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
 
        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        if self.dist_token is not None:
            nn.init.trunc_normal_(self.dist_token, std=0.02)
 
        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)
 
    def forward_features(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        if self.dist_token is None:
            x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]
        else:
            x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
 
        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        if self.dist_token is None:
            return self.pre_logits(x[:, 0])
        else:
            return x[:, 0], x[:, 1]
 
    def forward(self, x):
        x = self.forward_features(x)
        if self.head_dist is not None:
            x, x_dist = self.head(x[0]), self.head_dist(x[1])
            if self.training and not torch.jit.is_scripting():
                # during inference, return the average of both classifier predictions
                return x, x_dist
            else:
                return (x + x_dist) / 2
        else:
            x = self.head(x)
        return x
 
 
def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)
 
 
def vit_base_patch16_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model
 
 
def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model
 
 
def vit_base_patch32_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model
 
 
def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model
 
 
def vit_large_patch16_224(num_classes: int = 1000):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=None,
                              num_classes=num_classes)
    return model
 
 
def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model
 
 
def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model
 
 
def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: converted weights not currently available, too large for github release hosting.
    """
    model = VisionTransformer(img_size=224,
                              patch_size=14,
                              embed_dim=1280,
                              depth=32,
                              num_heads=16,
                              representation_size=1280 if has_logits else None,
                              num_classes=num_classes)
    return model

4. EffienctNet:


总结

个人学习使用,主要总结主流backbone用于消融实验。使用方法很简单,把网络定义拿过去,forward也直接拿过去,根据最后输出的特征维度,写一个卷积之类的把维度进行统一。

后续还有其他的视觉backbone会根据自己科研实验再进行补充。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

explorer_a

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值