时钟,NRZ/PAM4信号,眼图的关系

本文解释了时钟频率、信号速率和Nyquist频率的概念,探讨了NRZ和PAM4信号的生成过程,以及它们的信号速率计算。还介绍了NRZ/PAM4信号眼图在评估信号质量中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、时钟频率,信号速率,信号的Nyquist频率

二、时钟生成NRZ/PAM4信号        

三、NRZ/PAM4信号眼图的生成

一、时钟频率,信号速率,信号的Nyquist频率

        频率,指的是周期信号的在一秒内重复的次数,即f=1/T,单位是Hz。

        信号速率,指的是一个信号在一秒内传输的比特数,单位是bit/s(也可写成bps,读做比特率)。关于速率的一些衍生单位,如果我们将信号进行编码,假设将两个比特视作一个symbol,那么一个波特就等于两个比特,单位就可以表征为Buad/s(即Bps,读作波特率)。也就是说比特率是波特率的倍数,比特率=编码位数*波特率。

        信号的Nyquist频率,对于一串随机发送出来的信号,该信号是可以分解成很多个不同频率分量不同幅度相位的正弦信号叠加来的。Nyquist频率指的就是该信号的最高频率,可以理解为该信号一个比特传输所需要的时间分之一。下面会说明。 

二、时钟生成NRZ/PAM4信号        

   

         如上图所示,CLK假设为26.5625GHz的时钟,我们在时钟的上下沿均生成一个0或者1数据。我们看T1和T2两个周期内的NRZ/PAM4 信号。NRZ是一个比特编码,所以NRZ信号只有两种symbol,即0和1。PAM4是两个比特一个编码,因此有四种可能的symbol,即00、01、10、11。转化到信号的幅度上,NRZ信号只有两种电平状态,PAM4有四种电平状态。下面来生成信号。

        NRZ:上图中的NZR在CLK跳变沿只需要生成一个比特就能完成一个symbol的编码,四个跳变沿随机生成了0110的四个symbol,当然随机生成的信号是什么序列都要可能。如过这个序列生成的是规律的0101,那么这个信号就是时钟,他的频率也就是26.5625GHz,我们也无法根据这个时钟生成频率更高的序列了,那么这就是他的最高频率,就是这个NRZ信号的Nyquist频率。随机信号不是周期的没有频率一说,我们都说信号的最高(Nyquist)频率。再来看NRZ的信号速率,这个NRZ信号一个时钟周期内生成了两个比特,那么它的信号速率局势时钟频率*2,即data rate=时钟频率*2=53.125Gbps=53.125GBps(因为NRZ一个比特就是一个symbol所以一比特等于一波特)。

        PAM4:上图中的PAM4在CLK跳变沿需要生成两个比特就才完成一个symbol的编码,四个跳变沿随机生成了3(11)2(10)1(01)0(00)的四个symbol。这个序列需要两个时钟周期,如歌以这个序列重复,那么这个生成的周期信号频率只有时钟周期的一边,但是如果以第一个周期生成的3(11)2(10)一直重复,那么这个PAM4信号的频率也是时钟周期的频率。那么可以得出这个时钟产生的PAM4信号,其Nyquist频率也为26.5625GHz。在来看一个时钟周期产生了多少个比特多少个symbol。从图中得出T1周期内,PAM4信号产生了四个比特两个symbol。因此,这个PAM信号的速率是时钟频率*4比特=106.25Gbps或者说是时钟频率*2symbol=53.125GBps。

        NRZ和PAM4的原理就是如此,根据具体产生方式做不同分析。

三、NRZ/PAM4信号眼图的生成

        现在,我们将每个周期的NRZ都切开,然后叠加在一个周期内。那么得到的波形是下图所示。左图是完全没有干扰的信号,因此所有周期的结果都是完美重叠的变成一个工字。但是实际信号传输的过程中会存在噪声,插损,时钟等诸多因素影响,导致并不是都是完全重叠的。于是就得到了一个右边的眼图。因为NRZ信号只有两个电平,因此只需要一个时钟周期就能覆盖所以情况。在眼图里面,横轴是时间,单位是UI(等于生成这个信号的时钟周期),纵轴是信号幅度,单位是电压。 

        同理,PAM4有四种电平,三个眼睛,从(二)的图中看得出,如果需要覆盖三个眼睛至少需要1.5个UI。 

### 使用FIR滤波器调整PAM4信号眼图 为了在MATLAB中使用FIR滤波器来调整PAM4信号眼图并使其呈现倾斜效果,可以按照以下方法操作: #### 设计FIR滤波器 设计一个具有特定频率响应特性的FIR滤波器是关键。通过改变滤波器系数可以使传输函数引入相位失真,从而影响到最终显示的眼睛图案形状。 ```matlab % 定义采样率和目标频带特性 Fs = 10e9; % 假设的采样频率为10GHz Ntaps = 64; % FIR滤波器抽头数 % 创建低通FIR滤波器对象, 并设置参数使得其能够引起线性相移 h = firpm(Ntaps-1,[0 0.2 0.8 1],[1 1 0 0],'differentiator'); fvtool(h,'Fs', Fs); % 可视化查看滤波器性能 ``` 上述代码创建了一个不同iators类型的FIR滤波器[^1],它会在一定范围内提供近似恒定的群延迟时间差,进而造成输出信号相对于输入存在固定角度旋转的效果。 #### 应用FIR滤波器至PAM4数据流 接着将此滤波器应用于原始的四电平脉冲幅度调制(PAM4)序列上,并观察经过处理后的结果变化情况。 ```matlab % 构建测试用PAM4符号串 (简化版) data_in = randi([0 3],1,1024)-1.5; % 进行过零检测前先对原码型做适当预编码转换成实际发送形式 tx_signal = pammod(data_in,4); % 对生成好的基带信号施加前面定义过的自定义FIR滤波效应 filtered_tx = filter(h,1,tx_signal); ``` 这里`pammod()` 函数用于模拟真实的发射端工作流程,而 `filter()` 则负责执行卷积运算完成滤波动作。 #### 绘制眼图分析图像质量 最后一步就是利用Matlab内置工具箱绘制出理想状态下以及加入干扰因素之后两种情形下的对比效果图以便直观评估改进措施的有效程度。 ```matlab figure; eyediagram(filtered_tx,Fs/length(tx_signal)); title('Filtered PAM4 Eye Diagram'); hold on; eyediagram(tx_signal,Fs/length(tx_signal));title('Original PAM4 Eye Diagram'); legend({'With Filter','Without Filter'},'Location','Best') xlabel('Time Samples'), ylabel('Amplitude Level'); grid minor; ``` 这段脚本会分别展示未经任何修饰的标准形态与经由精心挑选配置过后所形成的独特样式之间的差异之处。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值