深度学习论文: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks及其PyTorch实现

CBNet: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
PDF:https://arxiv.org/pdf/1910.03151.pdf
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

作者通过比对试验分别比较了降维和通道信息交流对SE Block的影响,分别得出两个结论,不降维的SE具有更好性能,通道信息交流有助于SE性能提升。因此在SE Block的基础上提出了更轻量化的ECA Block
在这里插入图片描述

2 Efficient Channel Attention (ECA) Module

在这里插入图片描述
SE (Global pooling-FC[r]-ReLu-FC-sigmoid),FC[r]就是使用压缩比(降维)为 r 的FC层。

SE-Var1(0参数的SE,Global pooling-sigmoid)
SE-Var2 (Global pooling-[·]-sigmoid),[·]为点积操作。
SE-Var3 (Global pooling-FC-sigmoid)

2-1 Avoiding Dimensionality Reduction

SE-Var2和SE-Var3表明,不用降维操作的FC具有更好性能。SE-Var3结果更出色因为考虑了通道间信息交流(cross-channel interaction)。SE-GC1、SE-GC2 和 SE-GC3分别表示在SE-Var3基础上使用不同数量的 group的Group convolution操作。

2-2 Local Cross-Channel Interaction

同时作者可视化通道特征发现它具有一定的局部周期性,因此作者只考虑当前通道和其 k 个邻域通道的信息交流。然后参数数量为 k ,再共享所有通道的参数,则最终的参数数量为 k 。实现上使用卷积核为 k 的1D卷积来实现通道交换,即

在这里插入图片描述

3 与其他注意力模块对比

在这里插入图片描述

PyTorch代码:

class ECA_Module(nn.Module):
    def __init__(self, channel,gamma=2, b=1):
        super(ECA_Module, self).__init__()
        self.gamma = gamma
        self.b = b
        t = int(abs(log(channel, 2) + self.b) / self.gamma)
        k = t if t % 2 else t + 1

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=k, padding=k//2, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1,-2))
        y = y.transpose(-1,-2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值