目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 在这门实战课程中,你将学习到目标检测的基本概念和算法原理,掌握YOLO算法的细节和技巧。 探索算法背后的奥秘。通过实战项目,你将深入了解目标检测在物体识别、实时监控等领域的广泛应用!
✨专栏:YOLO目标检测实战案例精讲
在视频中计数物体可能是一项具有挑战性的任务,但是借助Python和OpenCV的强大功能,这个任务变得出人意料的简单。在这篇文章中,我将探讨如何利用YOLO(You Only Look Once)在视频流中实现计数物体。我会将整个过程分解成简单的步骤,使得初学者也能轻松学会。
Requirements
在正式开始之前,让我们确保已经安装了必要的库。主要包括:
PyTorch:通过PyTorchHub,
本文介绍了如何使用YOLOV5在Python中实现视频中的车辆计数。通过加载Yolov5 Nano模型,检测并过滤汽车、巴士和卡车,计算边界框的中心点,设置多边形参考,实现车辆计数和可视化。
订阅专栏 解锁全文
6374

被折叠的 条评论
为什么被折叠?



