使用YOLOV5实现视频中的车辆计数

本文介绍了如何使用YOLOV5在Python中实现视频中的车辆计数。通过加载Yolov5 Nano模型,检测并过滤汽车、巴士和卡车,计算边界框的中心点,设置多边形参考,实现车辆计数和可视化。
摘要由CSDN通过智能技术生成

目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 在这门实战课程中,你将学习到目标检测的基本概念和算法原理,掌握YOLO算法的细节和技巧。 探索算法背后的奥秘。通过实战项目,你将深入了解目标检测在物体识别、实时监控等领域的广泛应用!

✨专栏:YOLO目标检测实战案例精讲

在视频中计数物体可能是一项具有挑战性的任务,但是借助Python和OpenCV的强大功能,这个任务变得出人意料的简单。在这篇文章中,我将探讨如何利用YOLO(You Only Look Once)在视频流中实现计数物体。我会将整个过程分解成简单的步骤,使得初学者也能轻松学会。

Requirements

在正式开始之前,让我们确保已经安装了必要的库。主要包括:

  • PyTorch:通过PyTorch Hub,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值