【三.深度学习视觉基础】【2.CNN架构演进:LeNet到ConvNeXt】

在这里插入图片描述

大家好!今天我们来聊聊深度学习视觉领域的一个重要话题——卷积神经网络(CNN)的架构演进。从最早的LeNet到最新的ConvNeXt,CNN的架构经历了翻天覆地的变化。这篇文章将带你回顾这段历史,看看这些模型是如何一步步进化,最终成为我们今天所熟知的强大工具的。

1. 什么是CNN?

首先,让我们简单回顾一下什么是CNN。CNN,全称卷积神经网络,是一种专门用于处理图像数据的深度学习模型。它的核心思想是通过卷积操作来提取图像中的特征,然后通过池化操作来降低数据的维度,最后通过全连接层进行分类或回归。

CNN之所以在图像处理领域如此成功,主要是因为它的两个关键特性:局部感受野权值共享。局部感受野意味着每个神经元只关注图像的一小部分,而不是整个图像;权值共享则意味着同一个卷积核可以在图像的不同位置使用,从而大大减少了模型的参数数量。

2. LeNet:CNN的鼻祖

我们的故事要从1998年说起,当时Yann LeCun等人提出了L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值