大家好!今天我们来聊聊深度学习视觉领域的一个重要话题——卷积神经网络(CNN)的架构演进。从最早的LeNet到最新的ConvNeXt,CNN的架构经历了翻天覆地的变化。这篇文章将带你回顾这段历史,看看这些模型是如何一步步进化,最终成为我们今天所熟知的强大工具的。
1. 什么是CNN?
首先,让我们简单回顾一下什么是CNN。CNN,全称卷积神经网络,是一种专门用于处理图像数据的深度学习模型。它的核心思想是通过卷积操作来提取图像中的特征,然后通过池化操作来降低数据的维度,最后通过全连接层进行分类或回归。
CNN之所以在图像处理领域如此成功,主要是因为它的两个关键特性:局部感受野和权值共享。局部感受野意味着每个神经元只关注图像的一小部分,而不是整个图像;权值共享则意味着同一个卷积核可以在图像的不同位置使用,从而大大减少了模型的参数数量。
2. LeNet:CNN的鼻祖
我们的故事要从1998年说起,当时Yann LeCun等人提出了L