变量相似度的度量有许多方法,比如卡方检验,线性相关系数,F检验,互信息等
线性相关系数只能判别[线性]相关性,线性相关性低不代表没有别的相关性。
卡方检验:卡方越大说明两变量越相关,使用的时候需要设置零假设
F检验:检验两个正态随机变量的总体方差是否相等。
互信息:用到了信息熵,估计离散变量需要用到k近邻。k近邻的选取 见论文: Mutual Information between Discrete and Continuous Data Sets。
变量相似度的度量有许多方法,比如卡方检验,线性相关系数,F检验,互信息等
线性相关系数只能判别[线性]相关性,线性相关性低不代表没有别的相关性。
卡方检验:卡方越大说明两变量越相关,使用的时候需要设置零假设
F检验:检验两个正态随机变量的总体方差是否相等。
互信息:用到了信息熵,估计离散变量需要用到k近邻。k近邻的选取 见论文: Mutual Information between Discrete and Continuous Data Sets。