你可能已经使用 ChatGPT 或任何其他主要的LLM来构建系统、执行分类任务、回答问题或将其用作各种创造性和信息性任务的辅助。 然而,控制这些模型的输出以满足特定要求或匹配所需的风格至关重要。 在本文中,我们将重点关注影响语言模型输出的三个基本参数:top-k、top-p 和温度。
在我们深入了解这些参数之前,我们需要了解贪婪采样(greedy sampling)和随机采样(random sampling)之间的区别。 贪婪采样优先考虑最高概率的标记,确保输出集中,而随机采样(使用 top-k 或 top-p)添加随机性元素,从而产生更加多样化和创造性的输出。 现在大多数 LLM(例如 GPT、Llama-2、Claude 等)都使用贪婪采样,因此我们需要 top-p 和 top-k 参数来控制这种随机性。
NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 -