图像搜索引擎DIY【CLIP+FAISS】

你是否曾经想在无穷无尽的图像数据集中查找图像,但发现这太过繁琐?在本教程中,我们将构建一个图像相似性搜索引擎,以便使用文本查询或参考图像轻松查找图像。为方便起见,本文底部以 Colab 笔记本的形式提供了本教程的完整代码。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、概述

图像的语义可以用称为嵌入的数值向量表示。比较这些低维嵌入向量(而不是原始图像)可以实现高效的相似性搜索。对于数据集中的每个图像,我们将创建一个嵌入向量并将其存储在索引中。当提供文本查询或参考图像时,将生成其嵌入并将其与索引嵌入进行比较以检索最相似的图像。

以下是简要概述:

***)和CLIP(Contrastive Language-Image Pretraining)的技术。FAISS是一个用于高效相似度搜索的开源库,而CLIP是一个基于对比学习的图像和文本匹配模型。FAISS CLIP的目标是将这两种技术结合起来,实现在大规模数据集中进行基于文本的图像检索。 FAISS CLIP的基本原理是通过将图像和文本转换为向量表示,并计算它们之间的相似性来实现检索。首先,使用CLIP模型将输入的图像和文本编码为特征向量。然后,使用FAISS库进行高效的近似最近邻搜索,以找到与查询向量最相似的图像或文本。这种结合了文本和图像信息的相似度计算方法可以用于各种应用,如图像搜索、图像标注和图像生成等。 FAISS CLIP的优势在于它可以通过学习从图像和文本中提取语义信息的方式来进行检索。由于CLIP模型在大规模数据上进行了预训练,因此它能够学习到丰富的语义表示。而FAISS库则提供了高效的相似度搜索算法,可以在大规模数据集上进行快速检索。 总结起来,FAISS CLIP是将FAISSCLIP两种技术结合起来,用于实现基于文本的图像检索。它通过将图像和文本转换为向量表示,并计算它们之间的相似性来实现检索。这种结合了文本和图像信息的相似度计算方法可以用于各种应用,如图像搜索、图像标注和图像生成等。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [VQGAN-CLIP:只是玩弄让 VQGAN+CLIP 在本地运行,而不必使用 colab](https://download.csdn.net/download/weixin_42134051/20709390)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [从零到一,教你搭建「CLIP 以文搜图」搜索服务(二):5 分钟实现原型](https://blog.csdn.net/weixin_44839084/article/details/125611422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [faiss k-means 暂记](https://blog.csdn.net/ResumeProject/article/details/126706801)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值