图像搜索引擎DIY【CLIP+FAISS】

你是否曾经想在无穷无尽的图像数据集中查找图像,但发现这太过繁琐?在本教程中,我们将构建一个图像相似性搜索引擎,以便使用文本查询或参考图像轻松查找图像。为方便起见,本文底部以 Colab 笔记本的形式提供了本教程的完整代码。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、概述

图像的语义可以用称为嵌入的数值向量表示。比较这些低维嵌入向量(而不是原始图像)可以实现高效的相似性搜索。对于数据集中的每个图像,我们将创建一个嵌入向量并将其存储在索引中。当提供文本查询或参考图像时,将生成其嵌入并将其与索引嵌入进行比较以检索最相似的图像。

以下是简要概述:

  • 嵌入:使用 CLIP 模型提取图像的嵌入。
  • 索引:嵌入存储为 FAISS 索引。
  • 检索:使用 FAISS,查询的嵌入与索引嵌入进行比较,以检索最相似的图像。

1.1 CLIP 模型

由 OpenAI 开发的 CLIP(对比语言-图像预训练)模型是一种多模态视觉和语言模型,可将图像和文本映射到相同的潜在空间。由于我们将使用图像和文本查询来搜索图像,因此我们将使用 CLIP 模型来嵌入我们的数据。

1.2 FAISS 索引

FAISS(Facebook AI 相似性搜索)是由 Meta 开发的开源库。它围绕存储数据库嵌入向量的 Index 对象构建。FAISS 支持高效的相似性搜索和密集向量聚类,我们将使用它来索引我们的数据集并检索与查询相似的照片。

2、代码实现

为了创建本教程的图像数据集,我从 Pexels 收集了 52 张不同主题的图像。为了感受一下,让我们观察 10 张随机图像:

2.1 从图像数据集中提取 CLIP 嵌入

为了提取 CLIP 嵌入,我们首先使用 HuggingFace的 SentenceTransformer 库加载 CLIP 模型:

model = SentenceTransformer('clip-ViT-B-32')

接下来,我们将创建一个函数,使用 glob 遍历我们的数据集目录,使用 PIL的 Image.open 打开每个图像,并使用 CLIP的 model.encode 为每个图像生成一个嵌入向量。它返回嵌入向量列表和图像数据集的路径列表:

def generate_clip_embeddings(images_path, model):

    image_paths = glob(os.path.join(images_path, '**/*.jpg'), recursive=True)
    
    embeddings = []
    for img_path in image_paths:
        image = Image.open(img_path)
        embedding = model.encode(image)
        embeddings.append(embedding)
    
    return embeddings, image_paths



IMAGES_PATH = '/path/to/images/dataset'

embeddings, image_paths = generate_clip_embeddings(IMAGES_PATH, model)

2.2 生成 FAISS 索引

下一步是从嵌入向量列表创建 FAISS 索引。FAISS 为相似性搜索提供了各种距离度量,包括内积 (IP) 和 L2(欧几里得)距离。

FAISS 还提供各种索引选项。它可以使用近似或压缩技术来有效处理大型数据集,同时平衡搜索速度和准确性。在本教程中,我们将使用“平面”索引,它通过将查询向量与数据集中的每个向量进行比较来执行强力搜索,以确保以更高的计算复杂度为代价获得准确的结果。

def create_faiss_index(embeddings, image_paths, output_path):

    dimension = len(embeddings[0])
    index = faiss.IndexFlatIP(dimension)
    index = faiss.IndexIDMap(index)
    
    vectors = np.array(embeddings).astype(np.float32)

    # Add vectors to the index with IDs
    index.add_with_ids(vectors, np.array(range(len(embeddings))))
    
    # Save the index
    faiss.write_index(index, output_path)
    print(f"Index created and saved to {output_path}")
    
    # Save image paths
    with open(output_path + '.paths', 'w') as f:
        for img_path in image_paths:
            f.write(img_path + '\n')
    
    return index


OUTPUT_INDEX_PATH = "/content/vector.index"
index = create_faiss_index(embeddings, image_paths, OUTPUT_INDEX_PATH)

faiss.IndexFlatIP 初始化内积相似度索引,将其包装在 faiss.IndexIDMap 中,以将每个向量与 ID 关联。接下来, index.add_with_ids 将向量添加到具有连续 ID 的索引中,并将索引与图像路径一起保存到磁盘。

索引可以立即使用,也可以保存到磁盘以备将来使用。要加载 FAISS 索引,我们将使用以下函数:

def load_faiss_index(index_path):
    index = faiss.read_index(index_path)
    with open(index_path + '.paths', 'r') as f:
        image_paths = [line.strip() for line in f]
    print(f"Index loaded from {index_path}")
    return index, image_paths

index, image_paths = load_faiss_index(OUTPUT_INDEX_PATH)

2.3 通过文本查询或参考图像检索图像

建立 FAISS 索引后,我们现在可以使用文本查询或参考图像检索图像。如果查询是图像路径,则使用 PIL的 Image.open 打开查询。接下来,使用 CLIP的 model.encode 提取查询嵌入向量。

def retrieve_similar_images(query, model, index, image_paths, top_k=3):
    
    # query preprocess:
    if query.endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
        query = Image.open(query)

    query_features = model.encode(query)
    query_features = query_features.astype(np.float32).reshape(1, -1)

    distances, indices = index.search(query_features, top_k)

    retrieved_images = [image_paths[int(idx)] for idx in indices[0]]

    return query, retrieved_images

检索发生在 index.search 方法上。它实现了 k-最近邻 (kNN) 搜索,以找到与查询向量最相似的 k 个向量。我们可以通过更改 top_k 参数来调整 k 的值。在我们的实现中,kNN 搜索中使用的距离度量是余弦相似度。该函数返回查询和检索图像路径的列表。

现在我们准备使用文本查询进行搜索。辅助函数 visualize_results 显示结果。你可以在关联的 Colab 笔记本中找到它。让我们探索针对文本查询“ball”检索到的最相似的 3 幅图像,例如:

query = 'ball'
query, retrieved_images = retrieve_similar_images(query, model, index, image_paths, top_k=3)
visualize_results(query, retrieved_images)

使用查询“a ball”检索图像

对于查询“animal”,我们得到:

使用查询“动物”检索图像

使用参考图像搜索:

query ='/content/drive/MyDrive/Colab Notebooks/my_medium_projects/Image_similarity_search/image_dataset/pexels-w-w-299285-889839.jpg'
query, retrieved_images = retrieve_similar_images(query, model, index, image_paths, top_k=3)
visualize_results(query, retrieved_images)

查询和检索到的图像

如我们所见,我们为现成的预训练模型获得了非常酷的结果。当我们通过眼睛绘画的参考图像进行搜索时,除了找到原始图像外,它还找到了一个匹配的眼镜和另一幅画。这展示了查询图像语义含义的不同方面。

你可以在提供的 Colab 笔记本上尝试其他查询,以查看模型在不同文本和图像输入下的表现。

3、结束语

在本教程中,我们使用 CLIP 和 FAISS 构建了一个基本的图像相似性搜索引擎。检索到的图像与查询具有相似的语义含义,表明该方法的有效性。

虽然 CLIP 对于零样本模型显示出不错的结果,但它在分布外数据、细粒度任务上可能表现出较低的性能,并继承了训练数据的自然偏差。为了克服这些限制,你可以尝试其他类似 CLIP 的预训练模型(如 OpenClip),或者在自己的自定义数据集上微调 CLIP。


原文链接:图像搜索引擎DIY - BimAnt

***)和CLIP(Contrastive Language-Image Pretraining)的技术。FAISS是一个用于高效相似度搜索的开源库,而CLIP是一个基于对比学习的图像和文本匹配模型。FAISS CLIP的目标是将这两种技术结合起来,实现在大规模数据集中进行基于文本的图像检索。 FAISS CLIP的基本原理是通过将图像和文本转换为向量表示,并计算它们之间的相似性来实现检索。首先,使用CLIP模型将输入的图像和文本编码为特征向量。然后,使用FAISS库进行高效的近似最近邻搜索,以找到与查询向量最相似的图像或文本。这种结合了文本和图像信息的相似度计算方法可以用于各种应用,如图像搜索、图像标注和图像生成等。 FAISS CLIP的优势在于它可以通过学习从图像和文本中提取语义信息的方式来进行检索。由于CLIP模型在大规模数据上进行了预训练,因此它能够学习到丰富的语义表示。而FAISS库则提供了高效的相似度搜索算法,可以在大规模数据集上进行快速检索。 总结起来,FAISS CLIP是将FAISSCLIP两种技术结合起来,用于实现基于文本的图像检索。它通过将图像和文本转换为向量表示,并计算它们之间的相似性来实现检索。这种结合了文本和图像信息的相似度计算方法可以用于各种应用,如图像搜索、图像标注和图像生成等。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [VQGAN-CLIP:只是玩弄让 VQGAN+CLIP 在本地运行,而不必使用 colab](https://download.csdn.net/download/weixin_42134051/20709390)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [从零到一,教你搭建「CLIP 以文搜图」搜索服务(二):5 分钟实现原型](https://blog.csdn.net/weixin_44839084/article/details/125611422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [faiss k-means 暂记](https://blog.csdn.net/ResumeProject/article/details/126706801)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值