单变量随机扩散过程的参数估计——Hermite序列近似估计转移密度

随机扩散过程参数估计——Hermite序列近似估计转移密度

这篇博文基于作者个人最近阅读Yacine(2002)年的一篇很经典的论文的理解。这篇文章比较牛逼之处在于可以通过Hermite序列近似估计出转移概率密度(regardless the underlying distribution),从而得到一个外生得似然函数。并且可以扩展到多维的随机过程。

(未完待续 …)

虽然Yacine公开了程序,但是作者最近求知欲爆棚(比较无聊),所以记下自己的理解和自己猜测的一些推导细节。当然,刚开始学习,理解还浮于表面,如果有不到位的地方,希望路过的大牛能够指出。

对于一个一般的扩散过程:
d X t = μ ( X t ; θ ) d t + σ ( X t ; θ ) d W t (1) d \boldsymbol{X}_{t}=\mu\left(\boldsymbol{X}_{t} ; \boldsymbol{\theta}\right) d t+\sigma\left(\boldsymbol{X}_{t} ; \boldsymbol{\theta}\right) d \boldsymbol{W}_{t}\tag{1} dXt=μ(Xt;θ)dt+σ(Xt;θ)dWt(1)
比如说CIR过程:
d x t = α ( μ − x t ) d t + σ x t d W t (1*) d x_{t}=\alpha\left(\mu-x_{t}\right) d t+\sigma \sqrt{x_{t}} d W_{t}\tag{1*} dxt=α(μxt)dt+σxt dWt(1*)
从作者的上一篇博文可知,CIR过程服从非中心卡方分布,转移概率计算相当复杂。但是通过一系列的变换,Yacine让以上的过程更加近似于正态分布,从而可以用Hermite序列来近似估计正态分布函数。这个变换就是一个从X到Z的过程。得到Z过程的近似转移概率后,我们可以倒推到X过程,从而推出外生的似然函数,最终目标如下:
ℓ n ( θ ) ≡ ∑ i = 1 n ln ⁡ { p X ( Δ , X i Δ ∣ X ( i − 1 ) Δ ; θ ) } (**) \ell_{n}(\theta) \equiv \sum_{i=1}^{n} \ln \left\{p_{X}\left(\Delta, X_{i \Delta} | X_{(i-1) \Delta} ; \theta\right)\right\}\tag{**} n(θ)i=1nln{ pX(Δ,XiΔX(i1)Δ;θ)}(**)
通过似然函数的最优化,即可以对未知参数进行估计。具体的变化过程如下:

第一步, 标准化,去除方差的影响。 ( X → Y ) (X\rightarrow Y) (XY)
Y ≡ γ ( X ; θ ) = ∫ x d u / σ ( u ; θ ) (2) Y \equiv \gamma(X ; \theta)=\int^{x} d u / \sigma(u ; \theta)\tag{2} Yγ(X;θ)=xdu/σ(u;θ)(2)
带入Ito公式
d Y s = μ Y ( Y t ; θ ) d t + d W t ,  where  μ Y ( y ; θ ) = μ ( γ − 1 ( y ; θ ) ; θ ) σ ( γ − 1 ( y ; θ ) ; θ ) − 1 2 ∂ σ ∂ x ( γ − 1 ( y ; θ ) ; θ ) \begin{aligned} &d Y_{s}=\mu_{Y}\left(Y_{t} ; \theta\right) d t+d W_{t}, \quad \text { where }\\ &\mu_{Y}(y ; \theta)=\frac{\mu\left(\gamma^{-1}(y ; \theta) ; \theta\right)}{\sigma\left(\gamma^{-1}(y ; \theta) ; \theta\right)}-\frac{1}{2} \frac{\partial \sigma}{\partial x}\left(\gamma^{-1}(y ; \theta) ; \theta\right) \end{aligned} dYs=μY(Yt;θ)dt+dWt, where μY(y;θ)=σ(γ1(y;θ);θ)μ(γ1(y;θ);θ)21xσ(γ1(y;θ);θ)
第二步, 中心化,去除尖峰影响。 ( Y → Z ) (Y\rightarrow Z) (YZ)
Z ≡ Δ − 1 / 2 ( Y − y 0 ) (3) Z \equiv \Delta^{-1 / 2}\left(Y-y_{0}\right)\tag{3} ZΔ1/2(Yy0)(3)
第三步,利用Hermite序列近似逼近Z的转移概率密度:
p Z ( J ) ( Δ , z ∣ y 0 ; θ ) ≡ ϕ ( z ) ∑ j = 0 J η Z ( j ) ( Δ , y 0 ; θ ) H j ( z ) (4) p_{Z}^{(J)}\left(\Delta, z | y_{0} ; \theta\right) \equiv \phi(z) \sum_{j=0}^{J} \eta_{Z}^{(j)}\left(\Delta, y_{0} ; \theta\right) H_{j}(z)\tag{4} pZ(J)(Δ,zy0;θ)ϕ(z)j=0JηZ(j)(Δ,y0;θ)Hj(z)(4)
其中 ϕ ( z ) ≡ e − z 2 / 2 / 2 π \phi(z) \equiv e^{-z^{2} / 2} / \sqrt{2 \pi} ϕ(z)ez2/2/2π , 是标准的正态分布密度函数。而
H j ( z ) ≡ e z 2 / 2 d j d z j [ e − z 2 / 2 ] , j ≥ 0 (5) H_{j}(z) \equiv e^{z^{2} / 2} \frac{d^{j}}{d z^{j}}\left[e^{-z^{2} / 2}\right], \quad j \geq 0\tag{5} Hj(z)ez2/2dzjdj[ez2/2],j0(5)
是标准的Hermite序列。系数项可以如下的积分过程得到
η Z ( j ) ( Δ , y 0 ; θ ) ≡ ( 1 / j ! ) ∫ − ∞ + ∞ H j ( z ) p Z ( Δ , z ∣ y 0 ; θ ) d z (6) \eta_{Z}^{(j)}\left(\Delta, y_{0} ; \theta\right) \equiv(1 / j !) \int_{-\infty}^{+\infty} H_{j}(z) p_{Z}\left(\Delta, z | y_{0} ; \theta\right) d z\tag{6} ηZ(j)(Δ,y0

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值