Window 11本地部署 Meta Llama3-8b

Meta发布了Llama3,一个在15万亿个标记上训练的大型语言模型,提供高性能和安全性工具。Ollama作为用户友好工具,简化了大模型的本地部署。文章探讨了Llama3的性能提升、开源精神及如何通过Ollama便捷接入和集成到应用中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.   Llama3 简介    

       4月19日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。Llama 3 在超过 15 万亿个标记上进行训练,比 Llama 2 的数据集大 7 倍多。它大大降低了错误拒绝率,并提供了更高的响应一致性和多样性。此外,它还集成了新的信任和安全工具,如 Llama Guard 2、Code Shield 和 CyberSec Eval 2。

       Llama 3 是Meta开源的大型语言模型的最新迭代版本,具有出色的性能和可访问性。Llama 3 的模型大小从 80 亿(8B)到 700 亿(70B)参数不等,为自然语言处理任务提供了强大的工具。然而,本地运行如此庞大的模型可能具有挑战性,需要大量的计算资源和技术专业知识。

在接下来的月份里,Meta 期望推出新的功能、更长的上下文窗口、额外的模型尺寸以及提升的性能,并且Meta 将分享Llama 3的研究论文。 以Llama 3技术构建的Meta AI现已成为世界领先的AI助手之一,能够增强您的智慧并减轻您的负担——帮助您学习、完成任务、创作内容以及连接,以充分利用每一刻。

2.  Llama3的性能

       在Llama 3项目中,Meta致力于打造最佳的开源模型,使其能够与当今可用的最优质的私有模型相媲美。Meta希望解决开发者的反馈,以提高Llama 3的整体帮助度,同时继续在大规模语言模型(LLMs)的负责任使用和部署方面发挥领导作用。Meta拥抱开源精神,即尽早并经常发布中间产品,以便社区能够在这些模型仍然在开发中时获得访问权限。今天Meta发布的基于文本的模型是Llama 3集合中的第一批模型。在不远的将来,Meta的目标是使Llama 3成为一个

04-09
### LLAM 的 IT 相关概念解析 LLAM 并不是一个统一的标准术语,在不同的上下文中可能具有多种含义。以下是几种常见的解释: #### 1. **Low Latency Adaptive Modulation (低延迟自适应调制)** 在通信领域,LLAM 是一种用于无线通信的技术,旨在通过动态调整信号调制方式来优化传输性能[^4]。这种方法能够减少数据包丢失并提高链路利用率,尤其适用于实时应用(如视频流或语音通话)。 #### 2. **Local Low-power Area Network (低功耗局域网)** 虽然这一定义并不常见,但在某些物联网(IoT)场景下,“LLAM”可被理解为一种专为节能设备设计的小范围网络协议集合。这种类型的网络通常依赖于短距离、低能耗的连接技术(例如 Zigbee 或 Bluetooth LE),适合智能家居、健康监测等领域[^5]。 #### 3. **Language Learning and Modeling (语言学习与建模)** 如果从自然语言处理(NLP)的角度来看,“LLAM”也可能指代某种特定的语言模型训练方法或者框架。尽管目前主流讨论集中在像 Llama 这样的大语言模型(LLM),但更细分的研究方向可能会用缩写表示新型算法架构或工具集[^6]。 另外需要注意的是,上述提到关于Llama系列的大规模预训练模型确实代表了当前AI技术研发前沿水平之一[^2];不过它们本身并非直接对应传统意义上的“LLAM”。 下面提供一段Python脚本示例展示如何加载以及初步配置基于Hugging Face Transformers库实现的一个基础版本llama类实例化过程: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "meta-llama/Llama-2-7b-hf" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "Replace this with your input sentence." input_ids = tokenizer.encode(text, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值