张量、矩阵和向量区别

深度学习中会经常涉及到张量的维数、向量的维数的概念,我发现自己一直把它们给混淆了,原因是被一些约定俗成的叫法扰乱了,下面来介绍一下它们的区别。

首先,张量的维数等价于张量的阶数。
0维的张量就是标量,1维的张量就是向量,2维的张量就是矩阵,大于等于3维的张量没有名称,统一叫做张量。下面举例:
标量:很简单,就是一个数,1,2,5,108等等
向量:[1,2],[1,2,3],[1,2,3,4],[3,5,67,·······,n]都是向量
矩阵:[[1,3],[3,5]],[[1,2,3],[2,3,4],[3,4,5]],[[4,5,6,7,8],[3,4,7,8,9],[2,11,34,56,18]]是矩阵
3维张量:[[[1,2],[3,4]],[[1,2],[3,4]]]

但是混淆的地方来了,就是数学里面会使用3维向量,n维向量的说法,这其实指的是1维张量(即向量)的形状,即它所含分量的个数,比如[1,3]这个向量的维数为2,它有1和3这两个分量;[1,2,3,······,4096]这个向量的维数为4096,它有1、2······4096这4096个分量,都是说的向量的形状。你不能说[1,3]这个“张量”的维数是2,只能说[1,3]这个“1维张量”的维数是2。
矩阵也是类似,常常说的n×m阶矩阵,这里的阶也是指的矩阵的形状。
那么,张量的维数和张量的形状怎么看呢?

维度要看张量的最左边有多少个左中括号,有n个,则这个张量就是n维张量
[[1,3],[3,5]]最左边有两个左中括号,它就2维张量;[[[1,2],[3,4]],[[1,2],[3,4]]]最左边有三个左中括号,它就3维张量

形状的第一个元素要看张量最左边的中括号中有几个元素,形状的第二个元素要看张量中最左边的第二个中括号中有几个被逗号隔开的元素,形状的第3,4…n个元素以此类推
[[1,3],[3,5]]的最左边中括号有[1,3]和[3,5]这两个元素,最左边的第二个中括号里有1和3这两个元素,所以形状为[2,2];[[[1,2],[3,4]],[[1,2],[3,4]]]的最左边中括号有[[1,2],[3,4]]和[[1,2],[3,4]]这两个元素,最左边的第二个中括号里有[1,2]和[3,4]这两个元素,最左边的第三个中括号里有1和2这两个元素,所以形状为[2,2,2]

在形状的中括号中有多少个数字,就代表这个张量是多少维的张量。

参考博客

标、向量矩阵张量是线性代数中的重要概念,它们之间存在一定的联系。 - 标量是0维空间中的一个点,它只有大小没有方向,可以看作是一个单独的数值。 - 向量是一维空间中的一条线,它有大小和方向。向量可以由一组有序的数值组成,这些数值称为向量的分量。向量可以表示位移、速度、力等物理量。 - 矩阵是二维空间的一个面,它由多个行和列组成。矩阵可以看作是多个向量的排列,每个向量作为矩阵的一列或一行。矩阵可以表示线性变换、方程组等。 - 张量是三维空间中的一个体,它可以看作是多个矩阵的排列。张量可以有多个维度,每个维度对应一个矩阵张量可以表示物理领域中的物质性质、场等。 因此,可以总结为:向量由标量组成,矩阵向量组成,张量矩阵组成。它们在维度和元素的排列方式上存在不同,但都是线性代数中用于描述数学和物理问题的重要工具。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [标量、向量矩阵张量之间的区别和联系](https://blog.csdn.net/sinat_29957455/article/details/117396685)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值