SGLang vs vLLM:大模型推理引擎的全面对比
围绕 SGLang 和 vLLM 的全面对比与分析,整合两者的核心设计、工作原理、适用场景及多 GPU 协作机制,帮助大家快速理解并选择合适的工具。
SGLang vs vLLM:大模型推理引擎的全面对比
引言
随着大语言模型(LLM)的普及,如何高效部署和推理成为大家关注的核心问题。SGLang 和 vLLM 作为两大主流推理框架,在性能优化、多 GPU 协作和适用场景上各有侧重。本文将从设计目标、核心技术、性能表现、多 GPU 协作等角度展开对比,帮助大家来快速选型。
一、背景与核心设计目标
1. SGLang
- 全称:Structured Generation Language
- 开发团队:UC Berkeley
- 设计目标:
- 支持复杂的 LLM Programs(大模型程序化调用),如多轮对话、规划、工具调用和结构化输出(JSON 等)。
- 通过协同设计前端语言和后端运行时,提升多 GPU 节点的灵活性和性能。
2. vLLM
- 全称:Vectorized Large Language Model Inference
- 开发团队:UC Berkeley
- 设计目标:
- 优化大模型推理的 内存利用率 和 吞吐量,尤其适合高并发场景。
- 通过分页内存管理和动态批处理,解决单轮推理的效率和资源瓶颈。
二、核心技术对比
1. SGLang 的杀手锏
- RadixAttention
- 通过 基数树(Radix Tree) 管理键值缓存(KV Cache),支持多轮对话中共享前缀的缓存复用。
- 效果:在多轮任务中,缓存命中率提升 3-5 倍,显著降低延迟。
- 结构化输出支持
- 通过正则表达式和有限状态机(FSM)实现约束解码,直接生成 JSON 等结构化数据。
- 编译器式设计
- 前端 DSL(领域特定语言)简化复杂任务编程,后端运行时优化调度和资源分配。
2. vLLM 的核心理念
- PagedAttention
- 借鉴操作系统分页机制,将 KV Cache 划分为固定大小的块,动态分配显存。
- 效果:显存利用率提升 3-4 倍,支持更高并发。
- Continuous Batching
- 动态调整批处理大小,将请求分为 prefill(预填充)和 decode(解码)阶段,优化 GPU 利用率。
- 零冗余张量并行
- 通过 NCCL/MPI 通信库实现多 GPU 间的权重分割与同步,提升计算效率。
三、适用场景与性能表现
1. SGLang 的优势场景
- 复杂任务:多轮对话、规划、工具调用(如调用 API 或数据库)。
- 结构化输出:需生成 JSON、XML 等格式的任务(如智能客服、数据分析)。
- 性能数据:
- 在 Llama-7B 多轮对话任务中,吞吐量比 vLLM 高 5 倍。
- 延迟降低 30%-50%(依赖 RadixAttention 的缓存复用)。
2. vLLM 的优势场景
- 高吞吐单轮推理:内容生成、推荐系统、单轮问答。
- 性能数据:
- 吞吐量比 HuggingFace Transformers 高 14-24 倍。
- 在单 GPU 上可并行处理 100+ 请求(依赖 PagedAttention)。
四、多 GPU 节点的协作机制
1. SGLang 的多 GPU 策略
- 张量并行(Tensor Parallelism)
- 模型权重沿特定维度分割到多个 GPU(如
--tp 8
表示 8 GPU 并行)。
- 模型权重沿特定维度分割到多个 GPU(如
- 数据并行(Data Parallelism)
- 输入数据分片处理,结合连续批处理实现负载均衡。
- 缓存共享
- 通过 RadixAttention 跨 GPU 共享前缀缓存,减少冗余计算。
2. vLLM 的多 GPU 策略
- 张量并行
- 类似 SGLang,但更注重零冗余内存分配。
- 分布式调度器
- 动态分配请求到 GPU 节点,支持抢占机制(将部分请求暂存到 CPU)。
- 多节点扩展
- 支持 k8s 集群部署,通过流水线并行(Pipeline Parallelism)扩展至多台服务器。
五、选型建议
1. 选择 SGLang 的场景
- 需要处理复杂的多轮交互任务(如对话系统、规划代理)。
- 要求生成结构化输出(如 API 调用结果需严格遵循 JSON 格式)。
- 需深度定制生成逻辑或优化缓存复用。
2. 选择 vLLM 的场景
- 高并发单轮任务(如批量内容生成、实时问答)。
- 资源有限但需最大化吞吐量(如中小团队部署百亿参数模型)。
- 快速集成现有流水线(vLLM 的 API 和社区支持更成熟)。
六、总结
维度 | SGLang | vLLM |
---|---|---|
核心能力 | 多轮对话、结构化输出、复杂任务优化 | 高吞吐单轮推理、内存高效管理 |
技术亮点 | RadixAttention、编译器式设计 | PagedAttention、Continuous Batching |
适用模型 | 通用 LLM/VLM(如 LLaMA、DeepSeek) | 超大规模 LLM(如 GPT-4、Mixtral) |
开发门槛 | 较高(需定制前端 DSL) | 较低(开箱即用) |
最终结论:
- 如果你追求 灵活性和复杂任务支持,选 SGLang。
- 如果你追求 极致的吞吐量和快速部署,选 vLLM。
扩展资源
- SGLang GitHub: https://github.com/sgl-project/sglang
- vLLM GitHub: https://github.com/vllm-project/vllm
- 性能对比测试: SGLang vs vLLM Benchmark
- sglang的官方文档:https://docs.sglang.ai
- vllm的官方文档:https://docs.vllm.ai/en/latest/
希望这篇对比能帮助您在大模型推理框架的选型中做出明智决策!