SGLang vs vLLM:大模型推理引擎的全面对比

围绕 SGLangvLLM 的全面对比与分析,整合两者的核心设计、工作原理、适用场景及多 GPU 协作机制,帮助大家快速理解并选择合适的工具。


在这里插入图片描述
在这里插入图片描述

SGLang vs vLLM:大模型推理引擎的全面对比

引言

随着大语言模型(LLM)的普及,如何高效部署和推理成为大家关注的核心问题。SGLangvLLM 作为两大主流推理框架,在性能优化、多 GPU 协作和适用场景上各有侧重。本文将从设计目标、核心技术、性能表现、多 GPU 协作等角度展开对比,帮助大家来快速选型。


一、背景与核心设计目标

1. SGLang

  • 全称:Structured Generation Language
  • 开发团队:UC Berkeley
  • 设计目标
    • 支持复杂的 LLM Programs(大模型程序化调用),如多轮对话、规划、工具调用和结构化输出(JSON 等)。
    • 通过协同设计前端语言和后端运行时,提升多 GPU 节点的灵活性和性能。

2. vLLM

  • 全称:Vectorized Large Language Model Inference
  • 开发团队:UC Berkeley
  • 设计目标
    • 优化大模型推理的 内存利用率吞吐量,尤其适合高并发场景。
    • 通过分页内存管理和动态批处理,解决单轮推理的效率和资源瓶颈。

二、核心技术对比

1. SGLang 的杀手锏

  • RadixAttention
    • 通过 基数树(Radix Tree) 管理键值缓存(KV Cache),支持多轮对话中共享前缀的缓存复用。
    • 效果:在多轮任务中,缓存命中率提升 3-5 倍,显著降低延迟。
  • 结构化输出支持
    • 通过正则表达式和有限状态机(FSM)实现约束解码,直接生成 JSON 等结构化数据。
  • 编译器式设计
    • 前端 DSL(领域特定语言)简化复杂任务编程,后端运行时优化调度和资源分配。

2. vLLM 的核心理念

  • PagedAttention
    • 借鉴操作系统分页机制,将 KV Cache 划分为固定大小的块,动态分配显存。
    • 效果:显存利用率提升 3-4 倍,支持更高并发。
  • Continuous Batching
    • 动态调整批处理大小,将请求分为 prefill(预填充)和 decode(解码)阶段,优化 GPU 利用率。
  • 零冗余张量并行
    • 通过 NCCL/MPI 通信库实现多 GPU 间的权重分割与同步,提升计算效率。

三、适用场景与性能表现

1. SGLang 的优势场景

  • 复杂任务:多轮对话、规划、工具调用(如调用 API 或数据库)。
  • 结构化输出:需生成 JSON、XML 等格式的任务(如智能客服、数据分析)。
  • 性能数据
    • 在 Llama-7B 多轮对话任务中,吞吐量比 vLLM 高 5 倍
    • 延迟降低 30%-50%(依赖 RadixAttention 的缓存复用)。

2. vLLM 的优势场景

  • 高吞吐单轮推理:内容生成、推荐系统、单轮问答。
  • 性能数据
    • 吞吐量比 HuggingFace Transformers 高 14-24 倍
    • 在单 GPU 上可并行处理 100+ 请求(依赖 PagedAttention)。

四、多 GPU 节点的协作机制

1. SGLang 的多 GPU 策略

  • 张量并行(Tensor Parallelism)
    • 模型权重沿特定维度分割到多个 GPU(如 --tp 8 表示 8 GPU 并行)。
  • 数据并行(Data Parallelism)
    • 输入数据分片处理,结合连续批处理实现负载均衡。
  • 缓存共享
    • 通过 RadixAttention 跨 GPU 共享前缀缓存,减少冗余计算。

2. vLLM 的多 GPU 策略

  • 张量并行
    • 类似 SGLang,但更注重零冗余内存分配。
  • 分布式调度器
    • 动态分配请求到 GPU 节点,支持抢占机制(将部分请求暂存到 CPU)。
  • 多节点扩展
    • 支持 k8s 集群部署,通过流水线并行(Pipeline Parallelism)扩展至多台服务器。

五、选型建议

1. 选择 SGLang 的场景

  • 需要处理复杂的多轮交互任务(如对话系统、规划代理)。
  • 要求生成结构化输出(如 API 调用结果需严格遵循 JSON 格式)。
  • 需深度定制生成逻辑或优化缓存复用。

2. 选择 vLLM 的场景

  • 高并发单轮任务(如批量内容生成、实时问答)。
  • 资源有限但需最大化吞吐量(如中小团队部署百亿参数模型)。
  • 快速集成现有流水线(vLLM 的 API 和社区支持更成熟)。

六、总结

维度SGLangvLLM
核心能力多轮对话、结构化输出、复杂任务优化高吞吐单轮推理、内存高效管理
技术亮点RadixAttention、编译器式设计PagedAttention、Continuous Batching
适用模型通用 LLM/VLM(如 LLaMA、DeepSeek)超大规模 LLM(如 GPT-4、Mixtral)
开发门槛较高(需定制前端 DSL)较低(开箱即用)

最终结论

  • 如果你追求 灵活性和复杂任务支持,选 SGLang
  • 如果你追求 极致的吞吐量和快速部署,选 vLLM

扩展资源

希望这篇对比能帮助您在大模型推理框架的选型中做出明智决策!

### SGLangvLLM简介 SGLang是一种高级编程语言和框架,专为优化大型语言模型(LLM)的推理过程而设计[^3]。此工具不仅限于作为简单的推理引擎,还提供了更复杂的抽象层次来简化开发者的操作流程。通过引入类似于编译器前端的概念,SGLang能够更好地处理并行计算任务以及资源管理。 相比之下,vLLM是一个专注于提升大规模预训练模型部署效率的技术方案集合体[^2]。它最初因paged attention机制和支持连续批处理功能而受到广泛关注。这些特性使得vLLM能够在不牺牲精度的前提下显著提高吞吐量,并减少延迟时间。 ### 技术特点对比 #### 性能表现 - **SGLang**: 提供了一种新颖的方法论用于加速神经网络预测阶段的工作负载分配策略;同时支持多种硬件平台间的无缝切换以实现最佳运行效果。 - **vLLM**: 主要依靠内存分页技术和持续批次调度算法改善数据流传输速率及降低CPU-GPU间通信开销,在实际应用环境中表现出优异的成绩。 #### 易用性和灵活性 - **SGLang**: 设计之初就考虑到了易用性的需求,允许开发者编写简洁直观的代码片段来进行复杂逻辑控制。此外,其内置了许多实用函数库帮助快速搭建原型系统或生产环境下的解决方案。 - **vLLM**: 虽然本身并不提供额外的应用构建辅助工具集,但是凭借强大的底层架构可以轻松集成第三方API接口完成特定业务目标设定下的高效运作模式配置工作。 ### 应用场景分析 对于那些希望获得更高程度自动化水平并且追求极致性能体验的研究人员来说,SGLang无疑是最合适的选择之一。而对于已经具备一定技术积累的企业级客户而言,则可能更加倾向于采用成熟稳定的vLLM产品线来满足日常运营中的各种挑战性要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

[shenhonglei]

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值