当前主流的大模型训练与推理框架的全面汇总

以下是当前主流的大模型训练与推理框架的全面汇总

在这里插入图片描述

以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化:


一、通用深度学习推理框架

  1. TensorRT-LLM

    • 特点:NVIDIA推出的针对Transformer类模型的优化框架,支持多GPU分布式推理和低精度量化。
    • 示例:加速BERT、GPT-3等模型推理,集成Kernel融合和矩阵乘优化技术。
  2. ONNX Runtime

    • 特点:跨框架模型部署工具,支持ONNX格式模型的硬件无关优化。
    • 示例:将PyTorch或TensorFlow模型转换为ONNX格式后部署到CPU/GPU。
  3. OpenVINO

    • 特点:英特尔开发的跨平台推理工具,支持CPU/VPU/FPGA硬件加速。
    • 示例:图像分类模型(如ResNet)在英特尔CPU上的高效推理。
  4. FasterTransformer

    • 特点:NVIDIA优化的Transformer推理库,支持Tensor Core加速。
    • 示例:BERT和GPT模型在NVIDIA GPU上的低延迟推理。
  5. MNN

    • 特点:阿里巴巴推出的轻量级推理框架,支持移动端和边缘设备。
    • 示例:移动端图像识别模型的部署。

二、大语言模型(LLM)专用框架

  1. vLLM

    • 特点:基于PagedAttention技术的高吞吐量引擎,支持动态批处理。
    • 示例:部署Llama、GPT-4等模型,吞吐量比HuggingFace高10倍以上。
  2. HuggingFace TGI (Text Generation Inference)

    • 特点:支持多GPU扩展和量化方案,兼容HuggingFace模型库。
    • 示例:部署Falcon-180B或Llama 2-70B等万亿参数模型。
  3. DeepSpeed-Inference

    • 特点:微软开发的分布式推理框架,集成ZeRO优化器和3D并行技术。
    • 示例:千亿参数模型(如Megatron-Turing NLG)的多节点推理。
  4. Llama.cpp

    • 特点:纯C++实现的轻量级推理引擎,支持CPU端4-bit量化。
    • 示例:在MacBook上运行Llama-7B模型,无需GPU。
  5. LMDeploy

    • 特点:支持模型量化、服务化部署和性能监控。
    • 示例:百川智能系列模型的低资源部署。
  6. SGLang

    • 特点:面向复杂提示工程的推理优化框架,通过结构化生成语言(Structured Generation Language)提升多轮对话、分支逻辑等场景的效率。
    • 示例:处理需要嵌套条件判断的复杂提示(如多步骤数学推理),通过缓存中间结果减少重复计算,响应速度提升30%以上。

三、新兴框架与工具

  1. TensorFlow Serving

    • 特点:专为TensorFlow模型设计的服务化框架,支持多版本管理。
    • 示例:部署TensorFlow SavedModel格式的分类模型。
  2. Ollama

    • 特点:用户友好的本地LLM运行工具,支持一键启动模型。
    • 示例:在本地运行Mistral或Gemma模型。
  3. MLC-LLM

    • 特点:支持多种硬件后端(如WebGPU、Vulkan)。
    • 示例:在浏览器中运行量化后的语言模型。
  4. PowerInfer

    • 特点:基于稀疏激活模式的CPU-GPU混合推理框架。
    • 示例:在消费级GPU上高效运行大型模型。

四、量化与压缩工具

  1. bitsandbytes

    • 特点:支持8-bit和4-bit量化,与HuggingFace无缝集成。
    • 示例:将Llama-2模型量化为4-bit后部署。
  2. AWQ (Activation-aware Weight Quantization)

    • 特点:基于激活感知的权重量化算法,精度损失小。
    • 示例:量化OPT-175B模型并保持90%以上准确率。
  3. GPTQ

    • 特点:基于梯度信息的后训练量化方法。
    • 示例:将BERT模型压缩至2-bit仍保持高精度。

五、其他特色框架

  1. LightLLM

    • 特点:极简设计,专注于低资源环境下的推理优化。
  2. ScaleLLM

    • 特点:支持千卡集群的超大规模模型推理。
  3. Llamafile

    • 特点:将模型与运行时打包为单个可执行文件,便于分发。

常用示例场景

场景推荐框架优势
高吞吐量在线服务vLLM、TGI动态批处理、PagedAttention优化
复杂提示工程SGLang结构化生成、中间结果复用
边缘设备部署Llama.cpp、MNN低资源消耗、支持CPU推理
多GPU分布式推理DeepSpeed、TensorRT-LLM3D并行、高效显存管理
快速原型开发Ollama、Transformers易用性高、社区支持完善
量化压缩bitsandbytes、AWQ低精度量化、最小化精度损失

总结

当前主流框架超过23种(完整列表可参考),核心选择需结合以下因素:

  1. 硬件环境:GPU型号(如NVIDIA/AMD)、CPU架构、边缘设备类型。
  2. 模型类型:Transformer类模型优先选vLLM或FasterTransformer,轻量化模型可选Llama.cpp。
  3. 部署需求:服务化场景用TGI或TensorRT-LLM,本地开发用Ollama或LM Studio。

如需完整框架列表及技术对比,可进一步查阅 大模型推理框架总结

<think>好的,用户需要汇总当前大语言模型及其实现引擎的信息,并生成一个表格总结。首先,我需要确定用户的需求是什么,他们可能是在做研究或者项目,需要比较不同的大语言模型及其背后的技术架构应用场景。 接下来,我需要回忆现有的主流大语言模型,比如GPT系列、BERT、T5、PaLM等,以及它们的实现引擎,比如TensorFlow、PyTorch、JAX等。同时,还要考虑这些模型的特点、发布时间、参数量、应用领域等。 然后,用户提供的参考引用中提到了几个关键点:大规模语言模型的应用领域,如自然语言处理、语音识别等;中文词表扩展的模型如ChatGLM-6B、BELLE;多模态模型;以及相关的库如pandas、openai等。需要确保表格中包含这些信息,并正确引用来源。 另外,用户要求使用中文回答,并且按照格式要求,行内公式用$...$,独立公式用$$...$$。虽然当前问题不涉及数学公式,但需要保持整体结构清晰,分点回答,并在末尾添加相关问题。 可能需要验证每个模型的信息准确性,比如GPT-3的参数量是1750亿,发布年份是2020年,实现引擎是PyTorchTensorFlow。同时,注意引用对应的参考文献,比如引用[1]提到大规模语言模型的应用,引用[2]提到中文扩展模型,引用[3]提到BERTGPT,引用[4]提到的库如OpenAI。 最后,生成相关的问题,比如模型比较、引擎选择、中文模型优化等,确保问题用户需求相关,帮助他们进一步探索。</think>以下为当前主流大语言模型及其实现引擎的总结表格,包含模型特征、技术架构应用场景: | 模型名称 | 实现引擎 | 参数量 | 主要特征 | 应用场景 | 发布年份 | 引用来源 | |----------------|---------------|-------------|--------------------------------------------|----------------------------------|----------|----------| | GPT-4 | PyTorch | 1.8万亿 | 多模态支持,上下文理解优化 | 对话系统、代码生成、图像描述 | 2023 | [^1][^3] | | BERT | TensorFlow | 1.1亿 | 双向Transformer,掩码语言建模 | 文本分类、问答系统 | 2018 | [^3] | | T5 | JAX/TensorFlow| 110亿 | 文本到文本统一框架 | 翻译、摘要生成 | 2020 | | | PaLM | JAX | 5400亿 | 路径并行训练优化 | 科学计算、多语言处理 | 2022 | [^1] | | LLaMA | PyTorch | 7B-65B | 开源轻量化设计 | 学术研究、嵌入式设备 | 2023 | [^2] | | ChatGLM-6B | PyTorch | 62亿 | 中英双语优化,量化部署 | 中文对话、本地化应用 | 2022 | | | BLOOM | Megatron-DeepSpeed | 1760亿 | 多语言覆盖,开源协作开发 | 跨语言翻译、知识推理 | 2022 | | | ERNIE 3.0 | PaddlePaddle | 260亿 | 知识增强预训练 | 搜索引擎优化、行业知识库 | 2021 | [^3] | ### 关键技术说明 1. **引擎选择**:PyTorch因动态计算图优势成为主流(如$f(x)=Wx+b$的灵活实现),而JAX在超大规模模型训练中展现高效性(如$H(\theta)=\frac{1}{N}\sum_{i=1}^N \mathcal{L}(y_i,f_\theta(x_i))$的分布式计算) 2. **中文优化**:通过BELLE算法进行中文词表扩展时,需保持$loss = -\sum_{t=1}^T \log P(w_t|w_{<t})$的损失函数稳定性 3. **多模态扩展**:使用跨模态注意力机制实现图文对齐(如$Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V$)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

[shenhonglei]

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值