贝叶斯预测模型 (数学原理与推导)

本文深入探讨了贝叶斯预测模型的基础,包括方差的两种计算方法、联合概率分布与条件概率分布的关系,以及在特定条件下的独立性。特别地,文章通过贝叶斯线性回归和入侵检测系统的案例展示了贝叶斯预测分布的重要性。通过这些概念,我们可以更好地理解和应用贝叶斯理论解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 方差的两种计算方法

对于方差计算的一个重要结论:

2. 联合概率分布-条件概率分布

当然,利用联合概率分布也很容易推出边缘概率分布;只需要对其他变量进行全积分即可!

条件概率分布直观想象还是有难度的,很多时候我们仍然需要借助公式进行求解:

需要注意的是,上面介绍的是推广情况。针对于特殊情况,例如X,Y是相对独立的。那么联合概率和条件概率将退化成非常简单的形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值