浅谈控制原理以及PID

文章探讨了控制系统中PID控制器的重要性,通过MATLAB分析了二阶系统无控制器时的响应,解释了为何需要引入控制器以提高稳定性和响应速度。介绍了开环和闭环系统的区别,详细讲解了PID控制器(比例、积分、微分)的工作机制,以及如何通过调整参数来优化系统性能。同时,文章提到了控制器参数整定的经验法,并指出在实际应用中需考虑超调、稳态误差和系统干扰等因素。
摘要由CSDN通过智能技术生成

最近一个月,围绕公司业务,学习了一下控制原理以及pid的设计与参数整定,学的不算深,在这里结合matlab对目前所学进行一些整合,本篇所描述内容包含自己的理解,可能需要一定的系统知识基础

  1. 为什么需要使用控制器

首先来做个实验,如果不使用任何控制器,系统能否进行自身调节呢?以下面这个二阶开环系统为例,输入是阶跃信号,表示参考值,查看其仿真输出。

可以发现,即使不添加控制部分,系统自身也能被输入拉到指定参考值(想想为什么?),只是达到稳态的时间很久。这是因为上述系统具有两个负实部的极点,由信号系统的相关知识可知,该系统具有稳定性,即:有限的输入产生有限的输出。另外,观察零极点图:

该系统的两个极点中,将远离虚轴(左边)的极点称为极点1,靠近虚轴(右边)的极点称为极点2,如果将s域的传递函数转化为时域的冲激响应如下图所示:

注:该图实际仅画出极点的趋势,并非响应的准确描述,但趋势是确定的

发现靠近虚轴的极点(极点2)在响应中占据主导低位,收敛的趋势缓慢,从而使响应和的收敛速度变慢,进而验证了前面系统稳态时间长的实验结果,而极点1虽然自身产生的响应收敛速度快,但在线性系统里被极点2产生的响应给“拖累”了。这里的响应,本质就是不同极点对应着不同指数的自然对数的和,即:

当极点p从左半轴越靠近虚轴,的衰减越慢,相反,远离虚轴,其衰减越快。而由欧拉公式可知,如果极点具有虚部,会产生不同程度的正弦震荡。

同样,该响应曲线最终趋于0,也验证了系统的稳定性。

在这里还有一个问题,为什么输入一个参考值1,得到的响应最终就是趋于1呢?如果输入参考值为10,响应最终也是10吗?这就需要用到拉普拉斯的终值定理了,我们知道,阶跃信号在s域的变换为,由终值定理可知:

如果输入参考值为10,则输入信号的s域变换变为,即只改变了增益,由上述式子可知,响应最终也会趋于10。但要注意,拉普拉斯终值定理的使用是有条件的!

以上的分析都针对一个开环系统,如果一个系统的传递函数已知,则针对系统特性直接使用开环控制也是可以的,但实际应用中往往系统比较复杂,且受到环境、人为等多方面因素的影响,很难采用简单的方式进行开环控制,因此需要不断的根据实时输出动态地调整输入,即带反馈的闭环控制。

  1. 反馈控制器与PID

一个简单的反馈逻辑就是“缺多少补多少”,这和人的行为模式很类似,当你想拿起桌上的手机时,如果手机离你很远,会下意识地加快手臂动作,迅速接近;当手接近手机时,又会放慢速度,提高定位精度,最后到达目标位置准备拾取。下面就是一个简单的反馈回路:

其中,开环的二阶传递函数为:

可以顺势写出系统的闭环传递函数为:

得到的响应对比如图:

与开环系统相比,闭环系统更快进入稳态,但存在明显的稳态误差,同样运用拉普拉斯终值定理分析:

发现的确达不到预期的参考值,且实验的稳态值与理论值一致,说明理论分析是正确的。那么为什么会出现这种情况呢?举一个现实中的例子,当你在烧一壶水时,目标温度为100°,一开始的热功率很高,水温持续上升,热功率会慢慢下降,某一时刻下已经加热到95°了,但此时我的热功率下降到刚好跟水壶与环境温度交换的效率(散热功率)相等,无论我再继续加热,只要加热的功率不变,水温都只会保持在95°。我们可以在此引入比例的概念,即我欠了多少,要双倍奉还,这里的双倍就是比例,如图:

此时的闭环传递函数变成了:

这里的k可以是任意数值,在本例中k=2,经过仿真后得到的结果如图:

可以发现,比例放大误差的闭环系统,其控制输出响应更快,但同样存在稳态误差,只是该误差更小,使用终值定理对误差进行分析:

当k=2时,结果为2/3,与实验结果相符。

进一步讨论,随着k的增大,误差也在逐渐变小,即:

k趋于正无穷时,稳态误差趋于0,但实际上这是很难实现的。且随着比例系数的增大,系统响应会发生另一种现象:超调

想象一下我们在限速为120的高速路上开车,一脚油门下去快速加速,等速度提升至目标限速120时,才松开油门,往往速度会由于机器惯性继续加速一段时间,直到125甚至更高才停止加速,此时就发生了超调。超调的理论计算是困难的,但在实际应用中超调现象几乎是不可避免的,因此引入了一个动态性能指标:超调量。在设计控制器时,需要提前商定好超调量大小,并在这一指标范围内进行控制器设计。

继续讨论稳态误差的计算。由于比例控制器总是存在一定的稳态误差,于是我们决定重新设计一个控制器:

将新的控制器视作一个黑盒,设其传递函数为K(s),则闭环系统的传递函数为:

使用终值定理进行误差分析:

稳态误差为:

若要使稳态误差error为0,分母必须无穷大,于是很自然会想到,如果,是不是就能满足条件(前提是H(s)不能含有值为0的零点)。这便引入了积分的概念。

回想烧水的例子,这时我们的想法是,既然温度迟迟没有继续上升,但又达不到目标温度,就加大输入功率,这里面就蕴含了积分的思想(人的忍耐度是有极限的)。

如下图的比例积分控制器(PI):

观察结果,虽然稳态误差得到了消除,响应速度也加快了,但到达稳态的响应时间却延长了。我们可以很容易想到出积分的滞后特性,一个简单的思路是,积分控制引入了一个靠近虚轴的极点,从而导致响应时间变长。

在实际场景中,往往处理的是离散的数据,在离散域,积分的概念表现为累加,对以往的误差进行求和,确保当比例控制器无法减小误差时,积分控制器可以继续累加误差并增大输入

需要注意的是,积分分量不宜过大,适当的积分输入可以加速收敛,过量的积分输入却可以导致系统震荡,并加重超调现象。如果不想要控制器设计的太复杂,PI控制器也足够使用,但当面临系统响应的震荡时,就可以使用微分控制器来调节了。

微分调节的本质就是抑制变化和波动,如下图,微分部分对误差的趋势(斜率)进行解析,当响应曲线向上走时,误差斜率为负值,微分部分输出小于0,进而控制器整体输出会减小,抑制这种向上的趋势;而当响应曲线向下走时,误差斜率为正,微分部分输出大于0,进而控制器整体输出会增大,抑制这种向下的趋势

但同样,微分调节也不能过度,容易“矫枉过正”,在响应上升的过程中“拖慢节奏”,还会产生一定的超调,使系统的响应变得“迟钝”。

此外,在干扰比较严重的应用场景中,微分调节会放大噪声的高频分量,如果没有相应的处理,会引起严重的系统震荡事故。如下图,仅采用PI控制,受噪声干扰的影响是很小的,但引入了微分环节后,高频的波动会被无限放大,最终在参考值附近上下波动。

  1. 控制器的意义

还是以一个简单的反馈回路为例:

我们对闭环回路的传递函数进行研究:

在控制原理中有一句经典的描述:传递函数的极点可以受输入函数的激发,在输出响应中形成自由运动的模态。传递函数的零点并不形成自由运动的模态,但它们却影响着各模态在响应中所占的比重,因而也影响响应曲线的形状。通俗的说法就是,极点决定了响应的,而零点影响了响应的。大多数情况下,通过研究系统的极点可以解释大部分的系统特征。于是重点来研究这个系统的极点,令:

带入,得到一个一元二次方程:

解得:

在第二节我们研究了当k=2时的零极点图,那么将k由0增加到无穷时,极点的走向是如何呢?这就是根轨迹,在matlab中可以用以下命令进行绘图:

a = [1];
b = [0.4 4 1];
rlocus(a, b);

在根轨迹图上,两个极点的初始位置分别位于s=-9.7434和s=-0.2566(附近),此时增益k=0,随着k增大,极点沿着实轴相向运动,并在s=-4.5处交汇,然后分离,一条向上指向正无穷,一条向下指向负无穷。我们结合仿真和理论来仔细分析这一过程:

当增益k很小时,右侧极点占据主导地位(第二节分析),由于靠近虚轴,指数衰减较慢,于是响应速度也很慢;而左侧极点的响应由于衰减很快,被右侧极点的响应“拖累”,如图中k=4曲线;

当增益k增加到一定时,两点交汇,二重极点为s=-4.5,通过解二次方程可知此时增益k=9;

继续增大增益k,当k=15时,两个极点的实部依然是-4.5,因此曲线的收敛速度与k=9时一致;但由于向无穷延伸,带上了虚部,曲线出现明显的波折,可以找到极值点(局部最大点),这种现象与超调类似,只是没有超过参考值。

有了上面一系列分析的基础,我们在设计控制器时就有了新思路,即调整传递函数从而优化系统性能。该部分内容相对复杂,在这里推荐一下B站DR_CAN的视频课程,对超前和滞后器的解析是很到位的。

  1. PID参数的整定

对于第二节所讨论的PID控制器,其参数整定包括经验法、衰减曲线法、响应曲线法等等,在这里简单介绍一下经验法,也叫试凑法。

经验法遵循的是先比例、后积分、再微分三个步骤:

(1)首先调节比例系数,由于必然存在稳态误差以及可能发生的超调现象,在这一环节需要尽量将比例系数调整至一个较高的水平,使稳态误差保持在10%以内,并允许有小范围的超调

(2)其次调节积分系数,增大积分系数可以提高响应速度,并消除稳态误差,但会加重超调现象并延长调节时间,因此积分系数的整定一定要保守,使得响应能刚好以较快速度到达参考值的同时,不至于震荡幅度过大

(3)最后调节微分系数,微分环节需要依干扰程度而定,如果信号的干扰很大,应避免取过大的微分系数;即使信号干扰很小,也要考虑系统的响应速度,过大的微分系数会拖慢系统的响应节奏。适当的微分系数能有效减少前面两个调节环节带来的超调和震荡

  1. 写在最后

花了一星期终于写完了一部分,感觉写的很多但干货不多,只有浅浅的一些理解,更硬核的自己也没有搞懂(工作不需要过深的研究),之后有时间可以继续整理一些所学。文中所提到的内容如有错误,望大佬提出并指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值