#64 Minium Path Sum

本文介绍了如何用二维数组和动态规划(DP)方法解决LeetCode上的最小路径和问题。步骤包括确定DP数组含义、构建递推关系式和处理边界情况,最后提供了C++代码实现。
摘要由CSDN通过智能技术生成

Quote
Problem: 64. 最小路径和

思路

浅浅看一眼题目。
不难发现,这是一道DP题目。所以我们应该用DP的方式做题。
既然题目中说明了有一个网格,那么我们可以用二维数组。

解题方法

(几乎没有DP基础的人应该也能看懂的,不要对dp恐惧,请硬着头皮也要看下去)
根据一般的DP做题方式,我们可以分为三步思考:

1.确定DP数组的含义
这题比较容易确定,即为走到(i,j)和的最小值。

2.递推关系式
我们有两种方法走到第(i,j)个格子上:
Ⅰ.从(i-1,j)向右走;
Ⅱ.从(i,j-1)向下走.
显然,走到(i,j)时,需要加上grid[i][j]中的值。
由此,我们可以确定递推关系式
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];

3.确定边界
很明显,只要站在起点上,就有了起点的值。
所以dp[0][0]=grid[0][0];
因为递推关系式中有“i-1”“j-1”,所以我们应当确保i、j=0时是有值的,否则递推时会出现负数下标。

可能会令人疑惑的地方

grid数组的大小:
可以用size()函数来获得,在这里,二维vector可以理解为一个容器装了一些小容器,小容器中又装了一些int型。
所以小容器的大小为行数,大容器的size()就是小容器的个数,即列数。

Code

C++

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m=grid.size(),n=grid[0].size(),dp[205][205]={0};
        dp[0][0]=grid[0][0];
        for(int i=1;i<n;++i) dp[0][i]=dp[0][i-1]+grid[0][i];
        for(int i=1;i<m;++i) dp[i][0]=dp[i-1][0]+grid[i][0];
        for(int i=1;i<m;++i)
            for(int j=1;j<n;++j){
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        return dp[m-1][n-1];
    }
};


是我在LeetCode上写的题解。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值