离散数学:2.群

13.1 半群、拟群与群

定义

半群:对于代数系统 [ S ; ∗ ] [S;*] [S;],当二元运算 ∗ * 是可结合的,则为半群

拟群:含单位元的半群

群:拟群中的每一个元素都有逆元

交换群:群中的二元运算满足交换律

总结,群的三个条件:

  1. 二元运算,且满足结合律(半群)
  2. 含有单位元(拟群)
  3. 每一个元素都有逆元(群)
  4. 二元运算满足交换律(交换群, A b e l Abel Abel群)

[ G ; ⋅ ] [G;·] [G;⋅]为群,当 ∣ G ∣ = + ∞ |G|=+∞ G=+,称为无限群;当 ∣ G ∣ = n < + ∞ |G|=n<+∞ G=n<+时,为有限群,且群 G G G的阶数为 n n n

定理

计算规律

  1. 半群G中n个元素 a 1 a 2 … a n a_1a_2…a_n a1a2an连乘的积,经任意加括号其结果不变(P153,从后归纳)

  2. G为群, a i ∈ G , i = 1 , … , n a_i∈G,i=1,…,n aiGi=1,,n,则
    ( a 1 … a n ) − 1 = a n − 1 … a 1 − 1 (a_1…a_n)^{-1}=a_n^{-1}…a_1^{-1} (a1an)1=an1a11
    P153,用原式直接与等式右边相乘,再用结合律即得

  3. 群有指数律 P154

  4. G为交换群时,任意 a , b ∈ G a,b∈G a,bG ( a b ) n = a n b n (ab)^n=a^nb^n (ab)n=anbn (P154,分类讨论,n>0时可用递归)

  5. 群G有消去律(P154,同乘逆元即得)

群的等价定义

  1. 半群 → \rightarrow 群的要求减半:存在左(右)单位元和左(右)逆元 (p154)

    利用左逆元,找到左逆元的逆元,左逆元到了右边,可证明左逆元也是右逆元

    右单位元: g e = g ( g ′ g ) = ( g g ′ ) g = g ge=g(g'g)=(gg')g=g ge=g(gg)=(gg)g=g ,即左单位元也是右单位元

  2. 半群G是群,当且仅当,对任意的 a , b ∈ G a,b∈G a,bG,必存在 x , y ∈ G x,y∈G x,yG,使 a x = b , y a = b ax=b,ya=b ax=b,ya=b。(p155)

    令b=a,可以找到a的左单位元 e a e_a ea,证明 e a e_a ea为左单位元,再令b= e a e_a ea,则y是左逆元,由上一个定理可得

  3. 有限半群G为群,当且仅当运算满足消去律(p155)

    由于满足消去率,对任意 g 1 , g 2 ∈ G , g 1 ≠ g 2 g_1,g_2∈G,g_1≠g_2 g1,g2Gg1=g2,对任意一个 g ∈ G , g 1 g ≠ g 2 g g∈G,g_1g≠g_2g gGg1g=g2g,由于G为有限群,可构造G到G的映射 g 1 g g_1g g1g,它为双射,则说明任意 g ′ ∈ G g'∈G gG,必存在 g g g使 g 1 g = g ′ g_1g=g' g1g=g,则相当于方程 g x = g ′ gx=g' gx=g在G中有解,同理方程 y g = g ′ yg=g' yg=g也有解,由上条定理可得G为群

13.2 变换群、置换群与循环群

克莱因四元群

在这里插入图片描述

图一 克莱因四元群

证明:不等边长方形所有对称的集合,关于合成 ∘ \circ 构成群

有3种堆成方式,绕a,绕b,关于中心c堆成。

​ 绕a转180°: 1 → 4 , 2 → 3 , 3 → 2 , 4 → 1 , 1\rightarrow4,2\rightarrow3,3\rightarrow2,4\rightarrow1, 14,23,32,41,记为 α \alpha α

​ 绕b转180°: 1 → 2 , 2 → 1 , 3 → 4 , 4 → 3 1\rightarrow2,2\rightarrow1,3\rightarrow4,4\rightarrow3 12,21,34,43,记为 β \beta β

​ 关于c对称: 1 → 3 , 3 → 1 , 2 → 4 , 4 → 2 1\rightarrow3,3\rightarrow1,2\rightarrow4,4\rightarrow2 13,31,24,42,记为 γ \gamma γ

​ 初始状态: 1 → 1 , 2 → 2 , 3 → 3 , 4 → 4 1\rightarrow1,2\rightarrow2,3\rightarrow3,4\rightarrow4 11,22,33,44,记为 e e e

符合运算 ∘ \circ 表如下:
在这里插入图片描述

显然封闭,可结合, e e e是单位元,每个元素以自身为逆元,所以是群。

实际上,克莱因四元群是置换群。

13.2.1 变换群

变换:非空集合 S → S S\rightarrow S SS的一个双射(一一对应),称为一一变换。以 S S S^S SS表示 S S S上所有映射全体组成的集合, T ( S ) T(S) T(S)表示所有 S S S上一一变换组成的集合。则
S S = { f ∣ f : S → S } T ( S ) = { f ∣ f ∈ S S 且为一一对应 } S^S=\{f|f:S\rightarrow S\}\\ T(S)=\{f|f\in S^S 且为一一对应\} SS={ff:SS}T(S)={ffSS且为一一对应}
变换群:设 G ⊆ T ( S ) G\sube T(S) GT(S), [ G ; ∘ ] [G;\circ] [G;]为群时,称该群为变换群,其中 ∘ \circ 为一一变换的合成算法,并称为变换的乘法。

显然 T ( S ) T(S) T(S)是一个变换群,注意变换群的逆元条件证明。

13.2.2 置换群

置换群 设 S ≠ ∅ , ∣ S ∣ < + ∞ , S 设S\neq \large \empty,|S|<+\infty,S S=S<+,S上的一个一一变换称为置换,当 S S S上的某些置换关于乘法运算构成群时,为置换群。

**n次对称群 **:若 ∣ S ∣ = n , |S|=n, S=n, S = { 1 , 2 , ⋯   , n } S=\{1,2,\cdots,n\} S={1,2,,n},其置换全体组成的集合一般表示为 S n S_n Sn,可知 [ S n ; ⋅ ] [S_n;\cdot] [Sn;]是一个置换群,被称为n次对称群

S S S上的置换群 σ ∈ S n \sigma \in S_n σSn,习惯写成:
σ = ( 1 2 ⋯ n σ ( 1 ) σ ( 2 ) ⋯ σ ( n ) ) \sigma = \left(\begin{matrix} 1 & 2 & \cdots & n\\ \sigma(1) & \sigma(2) &\cdots& \sigma(n) \end{matrix}\right) σ=(1σ(1)2σ(2)nσ(n))

σ = ( i 1 i 2 ⋯ i n σ ( i 1 ) σ ( i 2 ) ⋯ σ ( i n ) ) \sigma = \left(\begin{matrix} i_1 & i_2 & \cdots & i_n\\ \sigma(i_1) & \sigma(i_2) &\cdots& \sigma(i_n) \end{matrix}\right) σ=(i1σ(i1)i2σ(i2)inσ(in))
​ 顺序是无关紧要的,它表示在置换 σ \sigma σ之下 i i i的象为 σ ( i ) ∈ S \sigma(i)\in S σ(i)S

​ 容易证明恒等置换 e e e
e = ( 1 2 ⋯ n 1 2 ⋯ n ) e=\left(\begin{matrix} 1 & 2 & \cdots & n\\ 1 & 2 &\cdots& n \end{matrix}\right) e=(1122nn)
​ 上述置换 σ \sigma σ的逆置换 σ − 1 \sigma^{-1} σ1
σ − 1 = ( σ ( 1 ) σ ( 2 ) ⋯ σ ( n ) 1 2 ⋯ n ) \sigma^{-1}=\left(\begin{matrix} \sigma(1) & \sigma(2) &\cdots& \sigma(n)\\ 1 & 2 & \cdots & n \end{matrix}\right) σ1=(σ(1)1σ(2)2σ(n)n)
显然n次对称群是一个有限群, ∣ S n ∣ = n ! |S_n|=n! Sn=n!

循环置换

​ 设 ∣ S ∣ = n , σ ∈ S n |S|=n,\sigma \in S_n S=n,σSn,形如
σ = ( i 1 i 2 ⋯ i d − 1 i d i d + 1 ⋯ i n i 2 i 3 ⋯ i d i 1 i d + 1 ⋯ i n ) \sigma=\left(\begin{matrix} i_1 & i_2 & \cdots & i_{d-1} & i_d & i_{d+1} & \cdots i_n \\ i_2 & i_3 & \cdots & i_{d} & i_1 & i_{d+1} & \cdots i_n \end{matrix}\right) σ=(i1i2i2i3id1ididi1id+1id+1inin)
​ 其中 2 ≤ d ≤ n 2\le d\le n 2dn,这种形式的置换叫做循环置换,称其循环长度为 d d d。特别地,当 d = 2 d=2 d=2时被称为对换。

​ 上述 σ \large \sigma σ又可写为 σ = ( i 1 ⋯ i d ) \large\sigma =(i_1\cdots i_d) σ=(i1id),意为 σ ( i j ) = i j + 1 \sigma(i_j)=i_{j+1} σ(ij)=ij+1,在变换 σ \sigma σ下的象是自身的元素不再写出。

​ 如果两个循环置换 A = ( i 1 , i 2 , ⋯   , i s ) A=(i_1,i_2,\cdots,i_s) A=(i1,i2,,is) B = ( j 1 , j 2 , ⋯   , j s ) B=(j_1,j_2,\cdots,j_s) B=(j1,j2,,js)满足 A ∩ B = ∅ A\cap B=\large\empty AB=,称这两个循环置换不相交,或没有公共元。同时,认为单位置换和任何循环置换不相交。显然,不相交的两循环置换满足交换律。(但不是所有满足交换律的置换都不相交)

定理推论

1. S n S_n Sn中的任一个置换均可分解为不含公共元的若干个循环置换的乘积。(p158)

使用归纳法,将置换分为两部分,k和n-k,由归纳可得

2.任意一个置换可以分解为若干个对换的乘积

注意到 ( i 1   i 2   ⋯   i d ) = ( i 1   i 2 ) ( i 2   i 3 ) ⋯ ( i d − 1   i d ) (i_1\ i_2\ \cdots \ i_d)=(i_1\ i_2)(i_2\ i_3)\cdots (i_{d-1}\ i_d) (i1 i2  id)=(i1 i2)(i2 i3)(id1 id)

偶置换、奇置换:一个置换的对换分解式中,对换因子的个数是偶数时,称该置换为偶置换,否则,称为奇置换。

3.一个长度为 k k k的循环置换,当 k k k为奇数时,它是一个偶置换,否则为奇置换(奇偶性相反)

由2很容易得出

4.每个偶置换均可分解为若干个长度为3的循环置换的乘积,循环置换中含有公共元。

注意到 ( a   b ) ( c   d ) = ( a   b ) ( b   c ) ( b   c ) ( c   d ) = ( a   b   c ) ( b   c   d ) (a\ b)(c\ d)=(a\ b)(b\ c)(b\ c)(c\ d)=(a\ b\ c)(b\ c\ d) (a b)(c d)=(a b)(b c)(b c)(c d)=(a b c)(b c d)(从后往前算)

5.奇偶置换在置换的乘法运算后的奇偶性

⋅ \cdot 偶置换奇置换
偶置换
奇置换

n次交待群:对称群 S n S_n Sn中所有偶置换(奇长度)组成的集合,记为 A n A_n An,关于置换的乘法构成群,称 [ A n ; ⋅ ] [A_n;\cdot] [An;]为n次交待群,显然 S n S_n Sn中奇偶各占一半,则 A n A_n An的阶为 ⌈ n ! 2 ⌉ \lceil \cfrac{n!}{2}\rceil 2n!

13.2.3 循环群

元素的阶 G G G为群, a ∈ G , ∃ k , l ∈ Z , k ≠ l a \in G,\exist k,l\in Z,k\neq l aG,k,lZ,k=l,使 a k = a l a^k=a^l ak=al,则 a k − l = e a^{k-l}=e akl=e,使 a n = e a^n=e an=e的最小正整数设为 n n n,称 n n n为元素 a a a的阶;也可以称 a a a为n阶元。如果 a a a的任意两个幂都不相等,就称 a a a为无限阶元或说 a a a的阶是无限的。

定理1 阶整除

G G G为群, a ∈ G a\in G aG,阶为 n n n,有 m ∈ Z , a m = e m\in Z,a^m=e mZ,am=e当且仅当 n ∣ m n|m nm

充分性是显然的,必要性可反证,如果不整除,则有比n更小的数。

循环群:群 G G G,若有 a ∈ G , ∀ g ∈ G , ∃ k ∈ Z a\in G ,\forall g\in G,\exist k\in Z aG,gG,kZ,有 g = a k g=a^k g=ak,就说群 G G G可以由元素 a a a生成,是循环群; a a a是它的一个生成元,将它表示成 G = ( a ) G=(a) G=(a)。当 G G G的阶有限时,称为有限循环群,否则称为无限循环群。

定理2 循环群同构

G G G为循环群, a a a为其一生成元,则 G G G的结构完全由元素 a a a的阶决定。(p162)

从同构意义上说,循环群只有两个,一个同构于加法群 [ Z ; + ] [Z;+] [Z;+],另一个同构于同余加法群 [ Z n ; ⊕ ] [Z_n;\oplus] [Zn;],分别证明同构即可,主要是通过生成元的生成元素不相等构造一一映射关系。
奇置换不满足封闭性,不构成群

13.3 子群、正规子群与商群

13.3.1 子群

子群 [ G ; ⋅ ] [G;\cdot] [G;]为群, H ⊆ G , H ≠ ∅ , [ H ; ⋅ ] H\subseteq G,H\ne \varnothing,[H;\cdot] HGH=,[H;]也为群时,称它为 G G G的子群,若 H H H G G G的真子集,则称 H H H G G G的真子群。 G 、 { e } G、\{e\} G{e}称为平凡子群,其余为非平凡子群

子群的判断:

定理3(封闭逆元): [ G ; ⋅ ] [G;\cdot] [G;]为群, H ⊆ G H\subseteq G HG H H H G G G的子群,当且仅当(1) ⋅ \cdot 关于 H H H封闭 (2) ∀ h ∈ H , h − 1 ∈ H \forall h\in H,h^{-1}\in H hH,h1H(p163)

主要是充分性,由封闭和性质2可知,单位元e在H中,又由 H ⊆ G H\subseteq G HG,可知满足结合律,则H是群

定理4( a b − 1 ab^{-1} ab1): [ G ; ⋅ ] [G;\cdot] [G;]为群, H ⊆ G H\subseteq G HG H H H G G G的子群,当且仅当 ∀ a , b ⊆ H , \forall a,b\subseteq H, a,bH, a b − 1 ⊆ H ab^{-1}\subseteq H ab1H。(p163)

也主要是充分性,结合律、单位元、逆元都是比较容易的,关于封闭性,即 ∀ a , b ∈ H , a b ∈ H \forall a,b \in H,ab\in H a,bH,abH,易知 b − 1 ∈ H b^{-1}\in H b1H,即得

定理5(有限群封闭): G G G为群, H ≠ ∅ , H ⊆ G , ∣ H ∣ < + ∞ H\ne \varnothing,H\subseteq G,|H|<+\infty H=,HG,H<+,则 H H H G G G的子群,当且仅当运算 ⋅ \cdot H H H中满足封闭性(p163)

主要证明充分性, ⋅ \cdot 的结合律和消去律是显然满足的。利用 H H H是有限集,则 ∀ a ∈ H , ∃ i , j ∈ Z , i ≠ j \forall a\in H,\exist i,j\in Z,i\ne j aH,i,jZ,i=j,有 a i = a j a^i=a^j ai=aj,立即得到单位元和逆元

推论: H H H G G G的子群时, H H H的单位元就是 G G G的单位元, a ∈ H a\in H aH H H H中的逆元就是它在 G G G中的逆元 a − 1 a^{-1} a1(p163)

13.3.2 陪集

陪集 H H H G G G的子群, 取 G G G中一个固定元素 g g g,用 g g g H H H中的每个元素进行乘法运算,将其结果组成一个集合,记为 g H gH gH,即 g H = { g h ∣ h ∈ H } gH=\{gh|h\in H\} gH={ghhH},称它为 H H H的左陪集,同理定义 H g = { h g ∣ h ∈ H } Hg=\{hg|h\in H\} Hg={hghH} H H H的右陪集。

由定义可知 e ∈ G , e\in G, eG,所以 H H H也是一个陪集,在一般情况下 H g ≠ g H Hg\ne gH Hg=gH

陪集的性质

引理1 陪集大小与子集相同

H ⊆ G H\subseteq G HG是子群且为有限阶,那么任一 g ∈ G g\in G gG所构成的陪集 ∣ g H ∣ = ∣ H ∣ , ∣ H g ∣ = ∣ H ∣ |gH|=|H|,|Hg|=|H| gH=H,Hg=H(p166)

定义映射 ϕ : H → H g , \phi:H\rightarrow Hg, ϕ:HHg, h ∈ H , h\in H, hH, ϕ ( h ) = h g \phi(h)=hg ϕ(h)=hg,是一个一一映射。该引理的结论可扩展到无限阶。

引理2 陪集要么相等,要么不相交

H H H G G G的子群, g 1 , g 2 ∈ G g_1,g_2\in G g1,g2G,两个右陪集 H g 1 , H g 2 Hg_1,Hg_2 Hg1,Hg2,则 H g 1 = H g 2 Hg_1=Hg_2 Hg1=Hg2 H g 1 ∩ H g 2 = ∅ Hg_1\cap Hg_2 = \varnothing Hg1Hg2=(p166,较重要)

反证,假设有交集,则 h 1 g 1 = h 2 g 2 = g , g 1 = h 1 − 1 h 2 g 2 h_1g_1=h_2g_2=g,g_1=h_1^{-1}h_2g_2 h1g1=h2g2=gg1=h11h2g2 g 1 = h 3 g 2 , h 3 = h 1 − 1 h 2 ∈ H g_1=h_3g_2,h_3=h_1^{-1}h_2\in H g1=h3g2h3=h11h2H

∀ h g 1 ∈ H g 1 \forall hg_1\in Hg_1 hg1Hg1,有 h g 1 = h ( h 3 g 2 ) = ( h h 3 ) g 2 ∈ H g 2 hg_1=h(h_3g_2)=(hh_3)g_2\in Hg_2 hg1=h(h3g2)=(hh3)g2Hg2,则 H g 1 ⊆ H g 2 Hg_1\subseteq Hg_2 Hg1Hg2,同理 H g 2 ⊆ H g 1 Hg_2 \subseteq Hg_1 Hg2Hg1,则 H g 1 = H g 2 Hg_1=Hg_2 Hg1=Hg2,矛盾

推论1 所有陪集构成一个划分

H ⊆ G H\subseteq G HG G G G的子群时,其所有右(左)陪集构成对集合 G G G的一个划分,即 G = ⋃ g ∈ G H g G=\bigcup\limits_{g\in G}Hg G=gGHg,其中 H g ≠ H g ′ Hg\ne Hg' Hg=Hg时, H g ∩ H g ′ = ∅ Hg\cap Hg' =\varnothing HgHg=

指数 H H H G G G的子群,关于 H H H的所有不同的左(右)陪集数叫做 H H H G G G中的指数。(一边的陪集数)

定理6 拉格朗日定理

G G G为有限群, H H H为其子群,则 H H H的阶可以整除 G G G的阶,其相除的商就是 H H H G G G中的指数 k k k。(p166)
G = ⋃ g ∈ G H g ∣ G ∣ = ∑ g ∈ G ∣ H g ∣ = k ∣ H ∣ ∣ G ∣ / ∣ H ∣ = k \begin{align} &G&=&\bigcup\limits_{g\in G}Hg\\ &|G|&=&\sum_{g\in G}|Hg|=k|H|\\ &|G|/|H|&=&k \end{align} GGG∣/∣H===gGHggGHg=kHk
拉格朗日定理只是 H H H G G G的子群的必要条件,而非充分条件。以4次交待群 A 4 A_4 A4为例, A 4 = 4 ! / 2 = 12 A_4=4!/2=12 A4=4!/2=12,但它没有6阶子群

推论1 G G G为有限群,其阶为素数 p p p,则 G G G是循环群(p167)

在G中任取一个不为单位元的元素g,由它可生成一个循环子群 H = ( g ) = { g 0 = e , g 1 , ⋯   , g k − 1 } , ∣ H ∣ = ∣ ( g ) ∣ = k H=(g)=\{g^0=e,g^1,\cdots,g^{k-1}\},|H|=|(g)|=k H=(g)={g0=e,g1,,gk1},H=(g)=k,可知 k ∣ ∣ G ∣ = k ∣ p , k ≠ 1 k||G|=k|p,k\ne1 k∣∣G=kpk=1,易知 k = p k=p k=p,则 ( g ) = G (g)=G (g)=G

推论2 G G G中任意元素的阶整除群的阶

∀ a ∈ G , H = ( a ) \forall a\in G,H=(a) aGH=(a),即 H H H a a a生成的循环子群,那么元素 a a a的阶即为子群 H H H的阶,已知 ∣ H ∣   ∣   ∣ G ∣ |H|\ |\ |G| H  G,即得。

13.3.3 正规子群

正规子群 H H H为群 G G G的子群,当 ∀ g ∈ G , g H = H g \forall g\in G,gH=Hg gG,gH=Hg,称 H H H G G G的正规子群,也可称为不变子群

易知,任意Abel群的子群都是正规的,而非交换群不一定是。

定理7 正规子群的判断

H H H G G G的子群,它是正规的当且仅当 ∀ g ∈ G , h ∈ H , \forall g\in G,h\in H, gG,hH, g − 1 h g ∈ H g^{-1}hg\in H g1hgH.(p167,莫名感觉像线代)

必要性:由正规可知,有 g h ′ = h g gh'=hg gh=hg,则 h ′ = g − 1 g h ′ = g − 1 h g ∈ H h'=g^{-1}gh'=g^{-1}hg\in H h=g1gh=g1hgH

充分性: ∀ h ∈ H \forall h\in H hH,有 a h = ( a h a − 1 ) a ∈ H a ah=(aha^{-1})a\in Ha ah=(aha1)aHa,则 a H ⊆ H a aH\subseteq Ha aHHa,同理 H a ⊆ a H Ha \subseteq aH HaaH

13.3.4 商群

商群 G G G为群, H H H为其正规子群, G / H G/H G/H为G关于 H H H的商集合, □ \Box G / H G/H G/H上关于陪集的运算,则 [ G / H ; □ ] [G/H;\Box] [G/H;]是群,称为 G G G关于 H H H的商群。在 G G G是有限阶的群时, G / H G/H G/H的阶必有限,且等于正规子群 H H H G G G中的指数 ∣ G ∣ / ∣ H ∣ |G|/|H| G∣/∣H

商集合 G G G为群, H H H为它的正规子群, G / H G/H G/H为所有不同的陪集组成的集合, G / H = { H g ∣ g ∈ G } G/H=\{Hg|g\in G\} G/H={HggG},称为 G G G关于 H H H的商集合。

定义一个 G / h G/h G/h上的二元关系 □ \Box :对任意 H g , H g ′ ∈ G / H Hg,Hg'\in G/H Hg,HgG/H
H g □ H g ′ = H g g ′ Hg\Box Hg' = Hgg' HgHg=Hgg
引理1:如上定义的 G / H G/H G/H上的二元关系与陪集代表元选取无关,即 □ \Box G / H G/H G/H上的运算。(p167)

∀ x ′ ∈ H x , y ′ ∈ H y , x ′ y ′ = x h 1 ′ y h 2 ′ = x y h 1 ′ ′ h 2 ′ ( h 1 ′ y = y h 2 ′ ′ ) = x y h \forall x' \in Hx,y'\in Hy,x'y'=xh_1'yh_2'=xyh_1''h_2'(h_1'y=yh_2'')=xyh xHx,yHy,xy=xh1yh2=xyh1′′h2(h1y=yh2′′)=xyh,则 x ′ y ′ ∈ H x y x'y'\in Hxy xyHxy,类似的有 x y ∈ H x ′ y ′ xy\in Hx'y' xyHxy,故 H x □ H y = H x y = H x ′ y ′ = H x ′ □ H y ′ Hx\Box Hy=Hxy=Hx'y'=Hx'\Box Hy' HxHy=Hxy=Hxy=HxHy,这里面的 x ′ ∈ [ x ] , y ′ ∈ [ y ] x'\in[x],y'\in[y] x[x],y[y]

引理2 [ G / H ; □ ] [G/H;\Box] [G/H;]是群(p168)

结合律显然, H e He He是单位元,逆元也是存在的

13.4 群的同态与同态基本定理

定理7 Cayley定理

任意有限群必同构于一个同阶的置换群(p168)

构造置换群 ∑ = { σ g ∣ g ∈ G , σ g : G → G } \sum=\{\sigma_g|g\in G,\sigma_g:G\rightarrow G\} ={σggG,σg:GG},其中 σ g ( g ′ ) = g g ′ \sigma_g(g')=gg' σg(g)=gg,说明下 σ g \sigma_g σg是一一对应(消去律),以及等式 φ ( g g ′ ) = σ g g ′ = σ g σ g ′ = φ ( g ) φ ( g ′ ) \varphi(gg')=\sigma_{gg'}=\sigma_g\sigma_{g'}=\varphi(g)\varphi(g') φ(gg)=σgg=σgσg=φ(g)φ(g)即可

例:同阶的循环群是同构的(证明同构关键在于写出合适的同构映射)

证明:设(a),(b)是两个n阶循环群( n ≤ + ∞ n\le+\infty n+),定义映射 φ : ( a ) → b , φ ( a k ) = b k \varphi:(a)\rightarrow b,\varphi(a^k)=b^k φ:(a)b,φ(ak)=bk;由循环群的性质可知映射 φ \varphi φ是保持运算的,又由于两个循环群是同阶的,因此 φ \varphi φ是一一对应的。于是又 a ≅ b a\cong b ab

同态核 φ \varphi φ为群 G → G ′ G\rightarrow G' GG同态映射(没要求一一对应), e , e ′ e,e' e,e分别为 G , G ′ G,G' G,G的单位元。集合 K = { x ∈ G ∣ φ ( x ) = e ′ } K=\{x\in G|\varphi(x)=e'\} K={xGφ(x)=e},称 K K K为同态映射 φ \varphi φ的核,又称同态核,记为 K e r φ Ker\varphi Kerφ,简记为 K ( φ ) K(\varphi) K(φ).(p169)

容易验证 K K K G G G的子群:

​ 显然又 ∣ K ∣ < + ∞ |K|<+\infty K<+,且由同态映射可知 φ ( k 1 k 2 ) = φ ( k 1 ) φ ( k 2 ) = e ′ , k 1 k 2 ∈ K \varphi(k_1k_2)=\varphi(k_1)\varphi(k_2)=e',k_1k_2\in K φ(k1k2)=φ(k1)φ(k2)=ek1k2K,故 K K K是封闭的,是子群

K K K也是 G G G的正规子群:
φ ( g − 1 k g ) = φ ( g − 1 ) φ ( k ) φ ( g ) = φ ( g − 1 ) e ′ φ ( g ) = φ ( g − 1 g ) = e \begin{align} \varphi(g^{-1}kg)&=\varphi(g^{-1})\varphi(k)\varphi(g)\\ &=\varphi(g^{-1})e'\varphi(g)\\ &=\varphi(g^{-1}g)\\ &=e \end{align} φ(g1kg)=φ(g1)φ(k)φ(g)=φ(g1)eφ(g)=φ(g1g)=e
对上述 g ∈ G , k ∈ K g\in G,k\in K gG,kK均是任意的,故 K K K是正规子群

自然同态:群 G G G同态于它的任一商群 G / H G/H G/H(p169)

定义映射: f : G → G / H , ∀ g ∈ G , f ( g ) = g H f:G\rightarrow G/H,\forall g\in G,f(g)=gH f:GG/H,gG,f(g)=gH,显然满射,也满足 f ( g g ′ ) = g g ′ H = g H □ g ′ H = f ( g ) □ f ( g ′ ) f(gg')=gg'H=gH\Box g'H=f(g)\Box f(g') f(gg)=ggH=gHgH=f(g)f(g),所以 f f f是同态映射,这个同态又称为自然同态

定理8 群同态定理

φ \varphi φ为群 G → G ′ G\rightarrow G' GG的同态映射, K K K为同态核, φ ( G ) ⊆ G ′ \varphi(G)\subseteq G' φ(G)G G G G φ \varphi φ下的象集,则 G / K ≅ φ ( G ) G/K\cong \varphi(G) G/Kφ(G)。当 φ \varphi φ是满射,即 G G G G ′ G' G同态时, G / K ≅ G ′ G/K \cong G' G/KG.(p169)

定义映射 Ψ : G / K → G ′ , ∀ g k ∈ G / K , Ψ ( g K ) = φ ( g ) \Psi:G/K\rightarrow G',\forall gk\in G/K ,\Psi(gK)=\varphi(g) Ψ:G/KG,gkG/K,Ψ(gK)=φ(g),接下来证明

1. Ψ \Psi Ψ是映射,即没有一对多,取相等的元素xK=yK,又 Ψ ( x K ) = Ψ ( y K ) \Psi(xK)=\Psi(yK) Ψ(xK)=Ψ(yK)

2. Ψ \Psi Ψ是内射(一一对应),取不同元素,得到的象不同

3. Ψ \Psi Ψ是满射, φ \varphi φ是满射,则 Ψ \Psi Ψ是满射,至此,证明了 Ψ \Psi Ψ是一一对应

4.证明 Ψ ( x K □ y K ) = Ψ ( x K ) Ψ ( y K ) \Psi(xK\Box yK)=\Psi(xK)\Psi(yK) Ψ(xKyK)=Ψ(xK)Ψ(yK)

在这里插入图片描述

图二 群同态关系图
  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值