5.2.注意力分数

注意力分数

在这里插入图片描述

​ 在上一节中,阐述了注意力机制,现在将其拓展到高维度:

假设query q ∈ R q q\in R^q qRq,m对key-value ( k 1 , v 1 ) , ⋯   , (k_1,v_1),\cdots, (k1,v1),,这里 k i ∈ R k , v i ∈ R v k_i \in R^k,v_i\in R^v kiRk,viRv

注意力池化层:
f ( q , ( k 1 , v 1 ) , ⋯   , ( k m , v m ) ) = ∑ i = 1 m α ( q , k i ) v i ∈ R v α ( q , k i ) = s o f t m a x ( a ( q , k i ) ) = e x p ( a ( q , k i ) ) ∑ j = 1 m e x p ( a ( q , k j ) ) ∈ R f(q,(k_1,v_1),\cdots,(k_m,v_m))=\sum ^m_{i=1}\alpha(q,k_i)v_i\in R^v\\ \alpha(q,k_i) = softmax(a(q,k_i))=\frac{exp(a(q,k_i))}{\sum ^m _{j=1} exp(a(q,k_j))}\in R f(q,(k1,v1),,(km,vm))=i=1mα(q,ki)viRvα(q,ki)=softmax(a(q,ki))=j=1mexp(a(q,kj))exp(a(q,ki))R
​ 函数a计算出来的就是注意力分数,下面介绍两种注意力评分函数的设计

1.掩蔽softmax操作

​ 有时并非所有的值都被纳入到注意力池化中,例如,某些文本序列被填充了没有意义的特殊词元,所以需要进行掩蔽:

#@save
def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

2.Additive Attention

​ 加性注意力

​ 一般来说,当查询和键是不同长度的矢量时,可以使用加性注意力作为评分函数。

​ 可学参数: W k ∈ R h × k , W q ∈ R h × q , v ∈ R h W_k\in R^{h\times k},W_q\in R^{h\times q},v\in R^h WkRh×k,WqRh×q,vRh
a ( k , q ) = v T t a n h ( W k k + W q q ) a(k,q) =v^T tanh(W_kk+W_qq) a(k,q)=vTtanh(Wkk+Wqq)
​ 等价于将key和query合并起来放入到一个隐藏大小为h输出大小为h输出大小为1的单隐藏层MLP,使用tanh作为激活函数,并且不适用偏置项。

#@save
class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False) # 最后输出的单隐藏层MLP
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后(unsqueeze是为了能广播)
        # queries的形状:(batch_size,查询的个数,1,num_hidden)
        # key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
        # 使用广播方式进行求和,太强了
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
        # scores的形状:(batch_size,查询的个数,“键-值”对的个数)
        scores = self.w_v(features).squeeze(-1)
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,“键-值”对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)
      
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
    2, 1, 1)
valid_lens = torch.tensor([2, 6])

attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
                              dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)

'''注意力权重'''
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

3. Scaled Dot-Product Attention

​ 缩放点积注意力

​ 如果query和key都是同样的长度 q , k i ∈ R d q,k_i\in R ^d q,kiRd,并假设查询和键的所有元素都是独立的随机变量, 并且都满足零均值和单位方差, 那么两个向量的点积的均值为0,方差为d。 为确保无论向量长度如何, 点积的方差在不考虑向量长度的情况下仍然是1, 我们再将点积除以 d \sqrt d d
a ( q , k i ) = < q , k i > d a(q,k_i) =\frac{<q,k_i>}{\sqrt{d}} a(q,ki)=d <q,ki>
​ 在实践中,我们通常从小批量的角度来考虑提高效率, 例如基于n个查询和m个键-值对计算注意力, 其中查询和键的长度为d,值的长度为v。

​ 查询 Q ∈ R n × d Q\in R^{n\times d} QRn×d,键 K ∈ R m × d K\in R ^{m\times d} KRm×d和值 V ∈ R m × v V\in R^{m\times v} VRm×v的缩放点积注意力是:
s o f t m a x ( Q K T d ) V ∈ R n × v softmax(\frac{QK^T}{\sqrt{d}})V \in R ^{n\times v} softmax(d QKT)VRn×v

#@save
class DotProductAttention(nn.Module):
    """缩放点积注意力"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # 设置transpose_b=True为了交换keys的最后两个维度
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)
      
queries = torch.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)


d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

注意力分数是query和key的相似度,注意力权重是分数的softmax结果。

  • 18
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值