Huber Regression(Huber回归)

Huber回归未忽略掉outlier,对oulier的采用线性损失,从而相对地降低了outlier的权重,最终降低了outlier对回归结果的影响。1相对地降低了outlier的权重是相对于MSE而言的,因为MSE采用平方,而Huber损失采用的是线性损失。2

Huber回归的优化目标函数如下1
min ⁡ w , σ ∑ i = 1 n ( σ + H ϵ ( X i w − y i σ ) σ ) + α ∥ w ∥ 2 2 \min _{w, \sigma} \sum_{i=1}^{n}\left(\sigma+H_{\epsilon}\left(\frac{X_{i} w-y_{i}}{\sigma}\right) \sigma\right)+\alpha\|w\|_{2}^{2} w,σmini=1n(σ+Hϵ(σXiwyi)σ)+αw22
其中: H ϵ ( z ) = { z 2 ,  if  ∣ z ∣ < ϵ 2 ϵ ∣ z ∣ − ϵ 2 ,  otherwise  H_{\epsilon}(z)=\left\{\begin{array}{ll}{z^{2},} & {\text { if }|z|<\epsilon} \\ {2 \epsilon|z|-\epsilon^{2},} & {\text { otherwise }}\end{array}\right. Hϵ(z)={z2,2ϵzϵ2, if z<ϵ otherwise 


  1. scikit-learn/modules/linear_model#huber-regression ↩︎ ↩︎

  2. 大数据文摘@机器学习大牛最常用的5个回归损失函数,你知道几个? ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千行百行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值