np.linalg.eigh特征值、特征向量的对应关系

import numpy as np
a=np.array([[1,2,2],[2,1,2],[2,2,1]])
w,v=np.linalg.eigh(a)
print(w)
print(v)
print(v.T.dot(a.dot(v)))

在这里插入图片描述
可见得到的v的每一列为一个特征向量,
v T ⋅ a ⋅ v = d i a g ( λ 1 , . . . , λ n ) v^T·a·v=diag(\lambda_1,... ,\lambda_n) vTav=diag(λ1,...,λn)

!!!注意只有a为对称阵结果才为对角矩阵,反例如下

import numpy as np
import numpy.linalg as LA
a=np.array([[1,3],[2,4]],dtype=float)
w,v=np.linalg.eigh(a)
print(c)
print(v.T.dot(a.dot(v)))

在这里插入图片描述
这是因为 A ⋅ v = v ⋅ d i a g ( λ 1 , λ n ) , v − 1 ⋅ A ⋅ v = d i a g ( λ 1 , . . . , λ n ) , 但对一般的矩阵 v T ≠ v − 1 A·v=v·diag(\lambda_1,\lambda_n),v^{-1}·A·v=diag(\lambda_1,...,\lambda_n),但对一般的矩阵v^T\neq v^{-1} Av=vdiag(λ1,λn),v1Av=diag(λ1,...,λn),但对一般的矩阵vT=v1

import numpy as np
import numpy.linalg as LA
a=np.array([[1,3],[2,4]],dtype=float)
c,b=np.linalg.eig(a)
print(c)
print(b.T);   
print(LA.inv(b).dot(a.dot(b)))

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值