【运筹学】表上作业法 ( 运输规划问题最优解分析 | 退化与非退化 )

本文介绍了运输规划问题的两种解情况:唯一最优解和无穷多最优解,并强调了运输问题不存在无界解和无可行解。重点讨论了退化与非退化解的概念,一个非退化解要求所有基变量均大于0,而退化解则存在至少一个基变量为0。文中提到的示例运输规划问题为非退化的,所有基变量严格大于0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述





一、运输规划问题



运输规划最终的求解最优解结果有如下情况 :

① 有唯一最优解 : 有一个检验数等于 0 0 0 ;

② 有无穷多最优解 : 这种情况下 所有的检验数都严格小于 0 0 0 ;


运输规划中不存在 ① 无界解 , ② 无可行解 两种情况 , 运输问题是一个实际的问题 , 运费肯定有一个可行的解 ;





二、退化与非退化



退化问题 :

运输问题的退化问题比较多 ,

给定一个线性规划 , 其中的变量分为两部分 , 基变量 和 非基变量 ,


非退化解 :

一个问题是 非退化的 ,

当且仅当 ,

所有的 基变量 都是非 0 0 0 的 , 即 严格大于 0 0 0 ;


退化解 :

一个问题是 退化的 ,

当且仅当 ,

存在 一个的 基变量 是 等于 0 0 0 的 ;


【运筹学】表上作业法 ( 示例 | 使用 “ 闭回路法 “ 计算检验数判定最优解 ) 博客中求解的运输规划问题是 非退化的 , 所有的基变量都是 严格大于 0 0 0 的 ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值