CUDA 块间的同步

panda1234lee 大神已经讲的很全面, https://blog.csdn.net/panda1234lee/article/details/88294382

但是有一些要注意,有些情况可能会出现死锁。由于多个block被分配到不同SM中进行运行,并且在单个SM中只有此block全部运行完之后,才会去调入剩余的block进行计算。

注意: 一个SM只有当前block运行完才调新的block进入。

当block数量大于SM数量时,会有出现问题。如果正在运行的block在进行同步等待,但是有些block没有被调入SM中运行,所以永远都不会出现block同时到达的情况,就会出现死锁。-----特别引起注意⚠️

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
CUDA中,块的分配是通过指定块的大小和网格的大小来实现的。例如,假设我们有一个计算总量为N=100000的任务,并且我们希望每个块中有128个线程。那么我们可以使用以下代码来计算网格的大小和分配块的数量: ``` N = 100000; block_size = 128; grid_size = (N + block_size - 1) / block_size; ``` 在这个例子中,我们将总计算量N除以块中的线程数block_size,并向上取整以确保我们有足够的块来处理所有的计算量。这样,grid_size就是我们需要分配的块的数量。 在CUDA中,我们可以使用函数cudaMalloc来在设备上分配内存。函数的形参devPtr是一个指向指针的指针,用于存储分配的内存的地址。size是需要分配的内存大小。例如,我们可以使用以下代码来分配一个大小为size的设备内存: ``` cudaMalloc(&devPtr, size); ``` 在CUDA中,我们可以使用函数cudaFree来释放设备上的内存。函数的形参devPtr是需要释放的设备内存的指针。例如,我们可以使用以下代码来释放一个设备内存: ``` cudaFree(devPtr); ``` 在CUDA中,我们可以使用函数cudaMemcpy来在主机和设备之间进行内存拷贝。函数的形参dst是目的地址,src是源地址,count是要拷贝的字节数,kind是拷贝的方向。例如,我们可以使用以下代码将count个字节从src拷贝到dst: ``` cudaMemcpy(dst, src, count, cudaMemcpyKind); ``` 在CUDA中,块是由许多线程组成的,并且可以有一维、二维或三维的形状。块内的多个线程可以同步(synchronize),并且可以访问共享内存(shared memory)。 希望这个例子能够帮助您理解CUDA中块分配的具体实例。 #### 引用[.reference_title] - *1* *2* *3* [CUDA学习](https://blog.csdn.net/HeiSeXingYe/article/details/122576054)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值